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Abstract

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known

incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models

with both individual and time effects. Under asymptotic sequences where the time-dimension (T ) grows

with the cross-sectional dimension (N), the time effects introduce additional incidental parameter bias.

As the existing bias corrections apply to models with only individual effects, we derive the appropriate

corrections for the case when both effects are present. The basis for the corrections are general asymptotic

expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply the

expansions to conditional maximum likelihood estimators with concave objective functions in parameters

for panel models with additive individual and time effects. These estimators cover fixed effects estimators

of the most popular limited dependent variable models such as logit, probit, ordered probit, Tobit and

Poisson models. Our analysis therefore extends the use of large-T bias adjustments to an important

class of models.

We also analyze the properties of fixed effects estimators of functions of the data, parameters and

individual and time effects including average partial effects. Here, we uncover that the incidental pa-

rameter bias is asymptotically of second order, because the rate of the convergence of the fixed effects

estimators is slower for average partial effects than for model parameters. The bias corrections are still

useful to improve finite-sample properties.
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1 Introduction

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known

incidental parameter problem (Neyman and Scott (1948), Heckman (1981), Lancaster (2000), and Greene

(2004)). A recent literature, surveyed in Arellano and Hahn (2007) and including Phillips and Moon

(1999), Hahn and Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Hahn and Newey (2004),

Carro (2007), Arellano and Bonhomme (2009), Fernandez-Val (2009), Hahn and Kuersteiner (2011),

Fernandez-Val and Vella (2011), and Kato, Galvao and Montes-Rojas (2012), provides a range of so-

lutions, so-called large-T bias corrections, to reduce the incidental parameter problem in long panels.

These papers derive the analytical expression of the bias (up to a certain order of the time dimension T ),

which can be employed to adjust the biased fixed effects estimators. While the existing large-T methods

cover a large class of models with individual effects, they do not apply to panel models with individual

and time effects. Time effects are important for economic modelling because they allow the researcher

to control for aggregate common shocks and to parsimoniously introduce dependence across individuals.

We develop analytical and jackknife bias corrections for nonlinear models with both individual and

time effects. To justify the corrections, we rely on asymptotic sequences where T grows with the

cross-sectional dimension N , as an approximation to the properties of the estimators in econometric

applications where T is moderately large relative to N . Examples include empirical applications that

use U.S. state or country level panel data, or trade flows across countries. Under these asymptotics,

the incidental parameter problem becomes a finite-sample bias problem in the time dimension and the

presence of time effects introduces additional bias in the cross sectional dimension. As the existing bias

corrections apply to models with only individual effects, we derive the appropriate correction.

In addition to model parameters, we provide bias corrections for average partial effects, which are

often the ultimate quantities of interest in nonlinear models. These effects are functions of the data,

parameters and individual and time effects in nonlinear models. The asymptotic distribution of the

fixed effects estimators of these quantities depends on the sampling properties of the individual and

time effects, unlike for model parameters. We find that in general the incidental parameters problem

for average effects is of second order asymptotically, because the rate of convergence of the fixed effect

estimator is slower for these effects than for model parameters. To the best of our knowledge, this rate

result is new for fixed effects estimators of average partial effects in nonlinear panel models with individual

and time effects.1 The bias corrections, while not necessary to center the asymptotic distribution,

improve the finite-sample properties of the estimators specially in dynamic models.

The basis for the bias corrections are asymptotic expansions of fixed effects estimators with incidental

parameters in multiple dimensions. Bai (2009) and Moon and Weidner (2013a; 2013b) derive similar

expansions for least squares estimators of linear models with interactive individual and time effects. We

consider non-linear models with additive individual and time effects, which turns out to produce a similar

asymptotic bias pattern, but requires very different methods to derive the asymptotic expansions. In

our case, the nonlinearity of the model introduces nonseparability between the estimators of the model

1Galvao and Kato (2013) also found slow rates of convergence for fixed effects estimators in linear models with individual

effects under misspecification. Fernandez-Val and Lee (2013) pointed out this issue in nonlinear models with only individual

effects.
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parameters and incidental parameters (individual and time effects). Moreover, we need to deal with an

asymptotically infinite dimensional non-diagonal Hessian matrix for the incidental parameters.

We focus on conditional maximum likelihood estimators with concave objective functions in all

parameters and additive individual and time effects. Concavity greatly facilitates showing consistency

in our setting where the dimension of the parameter space grows with the sample size. The most

popular limited dependent variable models, including logit, probit, ordered probit, Tobit and Poisson

models have concave log-likelihood functions (Olsen (1978), and Pratt (1981)). By additive effects, we

mean that the individual and time effects are additively separable in the conditional likelihood, i.e. the

individual effect αi and the time effect γt enter the likelihood for the observation (i, t) as αi + γt. This

is the most common specification for the individual and time effects in linear models and is a natural

specification in the nonlinear models that we consider. Our analysis therefore extends the use of large-T

bias adjustments to an important class of models.

Our corrections eliminate the leading term of the bias from the asymptotic expansions. Under

asymptotic sequences where N and T grow at the same rate, we find that this term has two components:

one of order O(T−1) coming from the estimation of the individual effects; and one of order O(N−1)

coming from the estimation of the time effects. We consider analytical methods similar to Hahn and

Newey (2004) and Hahn and Kuersteiner (2011), and suitable modifications of the split panel jackknife

of Dhaene and Jochmans (2010).2 However, the theory of the previous papers does not cover the

models that we consider, because, in addition to not allowing for time effects, they assume either

identical distribution or stationarity over time for the processes of the observed variables, conditional

on the unobserved effects. These assumptions are violated in our models due to the presence of the

time effects, so we need to adjust the asymptotic theory accordingly. The individual and time effects

introduce strong correlation in both dimensions of the panel. Conditional on the unobserved effects, we

impose cross-sectional independence and weak time-serial dependence, and we allow for heterogeneity

in both dimensions.

Simulation evidence indicates that our corrections improve the estimation and inference performance

of the fixed effects estimators of parameters and average effects. The analytical corrections dominate the

jackknife corrections in probit and Poisson models for sample sizes that are relevant for empirical practice.

We illustrate the corrections with an empirical application on the relationship between competition and

innovation using a panel of U.K. industries, following Aghion, Bloom, Blundell, Griffith and Howitt

(2005). We find that the inverted-U pattern relationship found by Aghion et al is robust to relaxing the

strict exogeneity assumption of competition with respect to the innovation process and to the inclusion

of innovation dynamics. We also uncover substantial state dependence in the innovation process.

The large-T panel literature on models with individual and time effects is sparse. Regarding lin-

ear regression models, there is a literature on interactive fixed effects that includes some of the papers

mentioned above (e.g. Pesaran (2006), Bai (2009), Moon and Weidner (2013a; 2013b)). Furthermore,

Hahn and Moon (2006) considered bias corrected fixed effects estimators in panel linear autoregressive

models with additive individual and time effects. Regarding non-linear models, there is independent and

contemporaneous work by Charbonneau (2012), which extended the conditional fixed effects estimators

2A similar split panel jackknife bias correction method was outlined in Hu (2002).
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to logit and Poisson models with exogenous regressors and additive individual and time effects. She

differences out the individual and time effects by conditioning on sufficient statistics. The conditional

approach completely eliminates the asymptotic bias coming from the estimation of the incidental pa-

rameters, but it does not permit estimation of average partial effects and has not been developed for

models with predetermined regressors. We instead consider estimators of model parameters and average

partial effects in nonlinear models with predetermined regressors. The two approaches can therefore be

considered as complementary.

In Section 2, we introduce the model and fixed effects estimators. Section 3 describes the bias

corrections to deal with the incidental parameters problem and illustrates how the bias corrections work

through an example. Section 4 provides the asymptotic theory. Sections 5 and 6 give Monte Carlo

and empirical results. We collect the proofs of all the results and additional technical details in the

Appendix.

2 Model and Estimators

2.1 Model

The data consist of N×T observations {(Yit, X ′
it)

′ : 1 ≤ i ≤ N, 1 ≤ t ≤ T }, for a scalar outcome variable

of interest Yit and a vector of explanatory variables Xit. We assume that the outcome for individual i

at time t is generated by the sequential process:

Yit | Xt
i , α, γ, β ∼ fY (· | Xit, αi, γt, β), (i = 1, ..., N ; t = 1, ..., T ),

where Xt
i = (Xi1, . . . , Xit), α = (α1, . . . , αN ), γ = (γ1, . . . , γT ), fY is a known probability function, and

β is a finite dimensional parameter vector.

The variables αi and γt are unobserved individual and time effects that in economic applications cap-

ture individual heterogeneity and aggregate shocks, respectively. The model is semiparametric because

we do not specify the distribution of these effects nor their relationship with the explanatory variables.

The conditional distribution fY represents the parametric part of the model. The vector Xit contains

predetermined variables with respect to Yit. Note that Xit can include lags of Yit to accommodate

dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary response model). Let Yit be a binary outcome and F be a cumulative distribution

function, e.g. the standard normal or logistic distribution. We can model the conditional distribution of

Yit using the single-index specification

fY (y | Xit, αi, γt, β) = F (X ′
itβ + αi + γt)

y [1− F (X ′
itβ + αi + γt)]

1−y, y ∈ {0, 1}.

Example 2 (Count response model). Let Yit be a non-negative interger-valued outcome, and f(·;λ)
be the probability mass function of a Poisson random variable with mean λ > 0. We can model the

conditional distribution of Yit using the single index specification

fY (y | Xit, αi, γt, β) = f(y; exp[X ′
itβ + αi + γt]), y ∈ {0, 1, 2, ....}.
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For estimation, we adopt a fixed effects approach treating the realization of the unobserved in-

dividual and time effects as parameters to be estimated. We collect all these effects in the vector

φNT = (α1, ..., αN , γ1, ..., γT )
′. The model parameter β usually includes regression coefficients of in-

terest, while the unobserved effects φNT are treated as a nuisance parameter. The true values of the

parameters, denoted by β0 and φ0NT = (α0
1, ..., α

0
N , γ

0
1 , ..., γ

0
T )

′, are the solution to the population condi-

tional maximum likelihood problem

max
(β,φNT )∈Rdimβ+dim φNT

Eφ[LNT (β, φNT )],

LNT (β, φNT ) := (NT )−1/2




∑

i,t

log fY (Yit | Xit, αi, γt, β)− b(v′NTφNT )
2/2



 , (2.1)

for every N, T , where Eφ denotes the expectation with respect to the distribution of the data conditional

on the unobserved effects and initial conditions including strictly exogenous variables, b > 0 is an

arbitrary constant, vNT = (1′N ,−1′T )
′, and 1N and 1T denote vectors of ones with dimensions N and

T . Existence and uniqueness of the solution to the population problem will be guaranteed by our

assumptions in Section 4 below, including concavity of the objective function in all parameters. The

second term of LNT is a penalty that imposes a normalization needed to identify φNT in models with

scalar individual and time effects that enter additively into the log-likelihood function as αi + γt.
3 In

this case, adding a constant to all αi, while subtracting it from all γt, does not change αi + γt. To

eliminate this ambiguity, we normalize φ0NT to satisfy v′NTφ
0
NT = 0, i.e.

∑
i α

0
i =

∑
t γ

0
t . The penalty

produces a maximizer of LNT that is automatically normalized. We could equivalently impose the

constraint v′NTφNT = 0 in the program, but for technical reasons we prefer to work with an unconstrained

optimization problem.4 The pre-factor (NT )−1/2 in LNT (β, φNT ) is just a convenient rescaling when

discussing the structure of the Hessian of the incidental parameters below.

Other quantities of interest involve averages over the data and unobserved effects

δ0NT = E[∆NT (β
0, φ0NT )], ∆NT (β, φNT ) = (NT )−1

∑

i,t

∆(Xit, β, αi, γt), (2.2)

where E denotes the expectation with respect to the joint distribution of the data and the unobserved

effects, provided that the expectation exists. They are indexed by N and T because the marginal

distribution of {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T } can be heterogeneous across i and/or t; see Section

4.2. These averages include average partial effects (APEs), which are often the ultimate quantities of

interest in nonlinear models. Some examples of partial effects, motivated by the numerical examples of

Sections 5 and 6, are the following:

3 In Appendix B we derive asymptotic expansions that apply to more general models. In order to use these expansions

to obtain the asymptotic distribution of the panel fixed effects estimators, we need to derive the properties of the expected

Hessian of the incidental parameters, a matrix with increasing dimension, and to show the consistency of the estimator of

the incidental parameter vector. The additive specification αi + γt is useful to characterize the Hessian and we impose strict

concavity of the objective function to show the consistency.
4There are alternative normalizations for φNT such as α1 = 0. The normalization has no effect on the model parameter and

average partial effects. Our choice is very convenient for certain intermediate results that involve the incidental parameters φNT ,

their score vector and their Hessian matrix.
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Example 1 (Binary response model). If Xit,k, the kth element of Xit, is binary, its partial effect on

the conditional probability of Yit is

∆(Xit, β, αi, γt) = F (βk +X ′
it,−kβ−k + αi + γt)− F (X ′

it,−kβ−k + αi + γt), (2.3)

where βk is the kth element of β, and Xit,−k and β−k include all elements of Xit and β except for the

kth element. If Xit,k is continuous and F is differentiable, the partial effect of Xit,k on the conditional

probability of Yit is

∆(Xit, αi, γt) = βk∂F (X
′
itβ + αi + γt), (2.4)

where ∂F is the derivative of F .

Example 2 (Count response model). If Xit includes Zit and some known transformation H(Zit) with

coefficients βk and βj, the partial effect of Zit on the conditional expectation of Yit is

∆(Xit, β, αi, γt) = [βk + βj∂H(Zit)] exp(X
′
itβ + αi + γt). (2.5)

2.2 Fixed effects estimators

We estimate the parameters by solving the sample analog of problem (2.1), i.e.

max
(β,φNT )∈Rdimβ+dimφNT

LNT (β, φNT ). (2.6)

As in the population case, we shall impose conditions guaranteeing that the solutions to the previ-

ous programs exist and are unique with probability approaching one as N and T become large. The

program (2.6) can be solved using standard optimization algorithms by imposing the normalization

v′NTφNT = 0 directly on the log-likelihood instead of using the penalty. These algorithms have good

computational properties even when N and T are large under the concavity and differentiability as-

sumptions that we shall impose in the log-likelihood.

To analyze the statistical properties of the estimator of β it is convenient to first concentrate out the

nuisance parameter φNT . For given β, we define the optimal φ̂NT (β) as

φ̂NT (β) = argmax
φNT∈Rdim φNT

LNT (β, φNT ) . (2.7)

The fixed effects estimators of β0 and φ0NT are

β̂NT = argmax
β∈Rdimβ

LNT (β, φ̂NT (β)) , φ̂NT = φ̂NT (β̂). (2.8)

Estimators of APEs can be formed by plugging-in the estimators of the model parameters in the

sample version of (2.2), i.e.

δ̂NT = ∆NT (β̂, φ̂NT ). (2.9)
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3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details to Section 4.

We illustrate the analysis with numerical calculations based on a variation of the classical Neyman and

Scott (1948) variance example.

3.1 Incidental parameter problem

Fixed effects estimators in nonlinear or dynamic models suffer from the incidental parameter problem

(Neyman and Scott, 1948). The individual and time effects are incidental parameters that cause the

estimators of the model parameters to be inconsistent under asymptotic sequences where either N or T

are fixed. To describe the problem let

βNT := argmax
β∈Rdim β

Eφ

[
LNT (β, φ̂NT (β))

]
. (3.1)

In general, plimN→∞ βNT 6= β0 and plimT→∞ βNT 6= β0 because of the estimation error in φ̂NT (β) when

one of the dimensions is fixed. If φ̂NT (β) is replaced by φNT (β) = argmaxφNT∈Rdim φNT Eφ[LNT (β, φNT )],

then βNT = β0. We consider analytical and jackknife corrections for the bias βNT − β0.

3.2 Bias Corrections

Some expansions can be used to explain our corrections. Under suitable sampling conditions, the bias

is small for large enough N and T , i.e., plimN,T→∞ βNT = β0. For smooth likelihoods and under

appropriate regularity conditions, as N, T → ∞,

βNT = β0 +B
β

∞/T +D
β

∞/N + oP (T
−1 ∨N−1), (3.2)

for some B
β

∞ and D
β

∞ that we characterize in Theorem 4.1, where a∨b := max(a, b). Unlike in nonlinear

models without incidental parameters, the order of the bias is higher than the inverse of the sample size

(NT )−1 due to the slow rate of convergence of φ̂NT . Note also that by the properties of the maximum

likelihood estimator √
NT (β̂NT − βNT ) →d N (0, V∞).

Under asymptotic sequences where N/T → κ2 as N, T → ∞, the fixed effects estimator is asymp-

totically biased because

√
NT (β̂NT − β0) =

√
NT (β̂NT − βNT ) +

√
NT (B

β

∞/T +D
β

∞/N + oP (T
−1 ∨N−1))

→d N (κB
β

∞ + κ−1D
β

∞, V∞). (3.3)

This is the large-N large-T version of the incidental parameters problem that invalidates any inference

based on the asymptotic distribution. Relative to fixed effects estimators with only individual effects,

the presence of time effects introduces additional asymptotic bias through D
β

∞.

The analytical bias correction consists of removing estimates of the leading terms of the bias from

the fixed effect estimator of β0. Let B̂β
NT and D̂β

NT be estimators of B
β

∞ and D
β

∞, respectively. The

7



bias corrected estimator can be formed as

β̃A
NT = β̂NT − B̂β

NT /T − D̂β
NT /N.

If N/T → κ2, B̂β
NT →P B

β

∞, and D̂β
NT →P D

β

∞, then

√
NT (β̃A

NT − β0) →d N (0, V∞).

The analytical correction therefore centers the asymptotic distribution at the true value of the parameter,

without increasing asymptotic variance.

We consider a jackknife bias correction method that does not require explicit estimation of the bias,

but is computationally more intensive. This method is based on the split panel jackknife (SPJ) of Dhaene

and Jochmans (2010) applied to the two dimensions of the panel. Alternative jackknife corrections based

on the leave-one-observation-out panel jackknife (PJ) of Hahn and Newey (2004) and combinations of

PJ and SPJ are also possible. We do not consider corrections based on PJ because they are theoretically

justified by second-order expansions of βNT that are beyond the scope of this paper.

To describe our generalization of the SPJ, let β̃N,T/2 be the average of the 2 split jackknife estimators

that leave out the first and second halves of the time periods, and let β̃N/2,T be the average of the 2 split

jackknife estimators that leave out half of the individuals.5 In choosing the cross sectional division of the

panel, one might want to take into account individual clustering structures to preserve and account for

cross sectional dependencies. If there are no cross sectional dependencies, β̃N/2,T can be constructed as

the average of the estimators obtained from all possible partitions of N/2 individuals to avoid ambiguity

and arbitrariness in the choice of the division.6 The bias corrected estimator is

β̃J
NT = 3β̂NT − β̃N,T/2 − β̃N/2,T . (3.4)

To give some intuition about how the corrections works, note that

β̃J
NT − β0 = (β̂NT − β0)− (β̃N,T/2 − β̂NT )− (β̃N/2,T − β̂NT ),

where β̃N,T/2 − β̂NT = B
β

∞/T + oP (T
−1 ∨ N−1) and β̃N/2,T − β̂NT = D

β

∞/N + oP (T
−1 ∨ N−1). The

time series split removes the bias term B
β

∞ and the cross sectional split removes the bias term D
β

∞.

3.3 Illustrative Example

To illustrate how the bias corrections work in finite samples, we consider a simple model where the

solution to the population program (3.1) has closed form. This model corresponds to the classical

Neyman and Scott (1948) variance example with individual and time effects, Yit | α, γ, β ∼ N (αi+γt, β).

It is well-know that in this case

β̂NT = (NT )−1
∑

i,t

(
Yit − Ȳi. − Ȳ.t + Ȳ..

)2
,

5When T is odd we define β̃N,T/2 as the average of the 2 split jackknife estimators that use overlapping subpanels with

t ≤ (T + 1)/2 and t ≥ (T + 1)/2. We define β̃N/2,T similarly when N is odd.
6There are P =

(
N
2

)
different cross sectional partitions with N/2 individuals. When N is large, we can approximate the

average over all possible partitions by the average over S ≪ P randomly chosen partitions to speed up computation.
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where Ȳi. = T−1
∑

t Yit, Ȳ.t = N−1
∑

i Yit, and Ȳ.. = (NT )−1
∑

i,t Yit. Moreover,

βNT = Eφ[β̂NT ] = β0 (N − 1)(T − 1)

NT
= β0

(
1− 1

T
− 1

N
+

1

NT

)
,

so that B
β

∞ = −β0 and D
β

∞ = −β0.7

To form the analytical bias correction we can set B̂β
NT = −β̂NT and D̂β

NT = −β̂NT . This yields

β̃A
NT = β̂NT (1 + 1/T + 1/N) with

β
A

NT = Eφ[β̃
A
NT ] = β0

(
1− 1

T 2
− 1

N2
− 1

NT
+

1

NT 2
+

1

N2T

)
.

This correction reduces the order of the bias from (T−1∨N−1) to (T−2∨N−2), and introduces additional

higher order terms. The analytical correction increases finite-sample variance because the factor (1 +

1/T + 1/N) > 1. We compare the biases and standard deviations of the fixed effects estimator and the

corrected estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give

β
J

NT = Eφ[β̃
J
NT ] = 3βNT − βN,T/2 − βN/2,T = β0

(
1− 1

NT

)
.

The correction therefore reduces the order of the bias from (T−1 ∨N−1) to (TN)−1.8

Table 1 presents numerical results for the bias and standard deviations of the fixed effects and bias

corrected estimators in finite samples. We consider panels with N, T ∈ {10, 25, 50}, and only report

the results for T ≤ N since all the expressions are symmetric in N and T . All the numbers in the

table are in percentage of the true parameter value, so we do not need to specify the value of β0. We

find that the analytical and jackknife corrections offer substantial improvements over the fixed effects

estimator in terms of bias. The first and fourth row of the table show that the bias of the fixed effects

estimator is of the same order of magnitude as the standard deviation, where V NT = Var[β̂NT ] =

2(N − 1)(T − 1)(β0)2/(NT )2 under independence of Yit over i and t conditional on the unobserved

effects. The fifth row shows the increase in standard deviation due to analytical bias correction is small

compared to the bias reduction, where V
A

NT = Var[β̃A
NT ] = (1 + 1/N + 1/T )2V NT . The last row shows

that the jackknife yields less precise estimates than the analytical correction in small panels.

Table 2 illustrates the effect of the bias on the inference based on the asymptotic distribution. It

shows the coverage probabilities of 95% asymptotic confidence intervals for β0 constructed in the usual

way as

CI.95(β̂) = β̂ ± 1.96V̂
1/2
NT = β̂(1 ± 1.96

√
2/(NT ))

where β̂ = {β̂NT , β̃
A
NT } and V̂NT = 2β̂2/(NT ) is an estimator of the asymptotic variance V∞/(NT ) =

2(β0)2/(NT ). To find the exact probabilities, we use that NT β̂NT/β
0 ∼ χ2

(N−1)(T−1) and β̃A
NT =

(1 + 1/N + 1/T )β̂NT . These probabilities do not depend on the value of β0 because the limits of the

7Okui (2013) derives the bias of fixed effects estimators of autocovariances and autocorrelations in this model.
8 In this example it is possible to develop higher-order jackknife corrections that completely eliminate the bias because

we know the entire expansion of βNT . For example, Eφ[4β̂NT − 2β̃N,T/2 − 2β̃N/2,T + β̃N/2,T/2] = β0, where β̃N/2,T/2 is the

average of the four split jackknife estimators that leave out half of the individuals and the first or the second halves of the time

periods. See Dhaene and Jochmans (2010) for a discussion on higher-order bias corrections of panel fixed effects estimators.
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Table 1: Biases and Standard Deviations for Yit | α, γ, β ∼ N (αi + γt, β)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

(βNT − β0)/β0 -.19 -.14 -.08 -.12 -.06 -.04

(β
A

NT − β0)/β0 -.03 -.02 .00 -.01 -.01 .00

(β
J

NT − β0)/β0 -.01 .00 .00 .00 .00 .00√
V NT /β

0 .13 .08 .05 .06 .04 .03√
V

A

NT /β
0 .14 .09 .06 .06 .04 .03√

V
J
NT /β

0 .17 .10 .06 .07 .04 .03

Notes: V
J
NT obtained by 50,000 simulations

intervals are proportional to β̂. As a benchmark of comparison, we also consider confidence intervals

constructed from the unbiased estimator β̃NT = NT β̂NT/[(N − 1)(T − 1)]. Here we find that the

confidence intervals based on the fixed effect estimator display severe undercoverage for all the sample

sizes. The confidence intervals based on the corrected estimators have high coverage probabilities, which

approach the nominal level as the sample size grows. Moreover, the bias corrected estimator produces

confidence intervals with very similar coverage probabilities to the ones from the unbiased estimator.

Table 2: Coverage probabilities for Yit | α, γ, β ∼ N (αi + γt, β)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

CI.95(β̂NT ) .56 .55 .65 .44 .63 .68

CI.95(β̃
A
NT ) .89 .92 .93 .92 .94 .94

CI.95(β̃NT ) .91 .93 .94 .93 .94 .94

Nominal coverage probability is .95.

4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (3.1) generally does not have closed form solution,

so we need to rely on asymptotic arguments to characterize the terms in the expansion of the bias (3.2)

and to justify the validity of the corrections.
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4.1 Asymptotic distribution of model parameters

We consider panel models with scalar individual and time effects that enter the likelihood function

additively through πit = αi+γt. In these models the dimension of the incidental parameters is dim φNT =

N+T . The leading cases are single index models, where the dependence of the likelihood function on the

parameters is through an index X ′
itβ+αi+γt. These models cover the probit and Poisson specifications

of Examples 1 and 2. Moreover, the additive structure only applies to the unobserved effects, so we

can allow for scale parameters to cover the Tobit and negative binomial models. We focus on these

additive models for computational tractability and because we can establish the consistency of the fixed

effects estimators under a concavity assumption in the log-likelihood function with respect to all the

parameters.

The parametric part of our panel models takes the form

log fY (Yit | Xit, αi, γt, β) = ℓit(β, πit). (4.1)

We denote the derivatives of the log-likelihood function ℓit by ∂βℓit(β, π) := ∂ℓit(β, π)/∂β, ∂ββ′ℓit(β, π) :=

∂2ℓit(β, π)/(∂β∂β
′), ∂πqℓit(β, π) := ∂qℓit(β, π)/∂π

q , q = 1, 2, 3, etc. We drop the arguments β and π

when the derivatives are evaluated at the true parameters β0 and π0
it := α0

i + γ0t , e.g. ∂πqℓit :=

∂πqℓit(β
0, π0

it). We also drop the dependence on NT from all the sequences of functions and parameters,

e.g. we use L for LNT and φ for φNT .

We make the following assumptions:

Assumption 4.1 (Panel models). Let ν > 0 and µ > 4(8 + ν)/ν. Let ε > 0 and let B0
ε be a subset of

R

dimβ+1 that contains an ε-neighbourhood of (β0, π0
it) for all i, t, N, T .

(i) Asymptotics: we consider limits of sequences where N/T → κ2, 0 < κ <∞, as N, T → ∞.

(ii) Sampling: conditional on φ, {(Y T
i , X

T
i ) : 1 ≤ i ≤ N} is independent across i and, for each i,

{(Yit, Xit) : 1 ≤ t ≤ T } is α-mixing with mixing coefficients satisfying supi ai(m) = O(m−µ) as

m→ ∞, where

ai(m) := sup
t

sup
A∈Ai

t,B∈Bi
t+m

|P (A ∩B)− P (A)P (B)|,

and for Zit = (Yit, Xit), Ai
t is the sigma field generated by (Zit, Zi,t−1, . . .), and Bi

t is the sigma

field generated by (Zit, Zi,t+1, . . .).

(iii) Model: for Xt
i = {Xis : s = 1, ..., t}, we assume that for all i, t, N, T,

Yit | Xt
i , φ, β ∼ exp[ℓit(β, αi + γt)].

The realizations of the parameters and unobserved effects that generate the observed data are de-

noted by β0 and φ0.

(iv) Smoothness and moments: We assume that (β, π) 7→ ℓit(β, π) is four times continuously differen-

tiable over B0
ε a.s. The partial derivatives of ℓit(β, π) with respect to the elements of (β, π) up to

fourth order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function M(Zit) > 0

a.s., and maxi,t Eφ[M(Zit)
8+ν ] is a.s. uniformly bounded over N, T .
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(v) Concavity: For all N, T, (β, φ) 7→ L(β, φ) = (NT )−1/2{∑i,t ℓit(β, αi + γt) − b(v′φ)2/2} is strictly

concave over Rdimβ+N+T a.s. Furthermore, there exist constants bmin and bmax such that for all

(β, π) ∈ B0
ε , 0 < bmin ≤ −Eφ [∂π2ℓit(β, π)] ≤ bmax a.s. uniformly over i, t, N, T .

Assumption 4.1(i) defines the large-T asymptotic framework and is the same as in Hahn and Kuer-

steiner (2011). Assumption 4.1(ii) does not impose identical distribution nor stationarity over the time

series dimension, conditional on the unobserved effects, unlike most of the large-T panel literature, e.g.,

Hahn and Newey (2004) and Hahn and Kuersteiner (2011). These assumptions are violated by the

presence of the time effects, because they are treated as parameters. The mixing condition is used to

bound covariances and moments in the application of laws of large numbers and central limit theorems

– it could replaced by other conditions that guarantee the applicability of these results.

Assumption 4.1(iii) is the parametric part of the panel model. We rely on this assumption to

guarantee that ∂βℓit and ∂πℓit have martingale difference properties. Moreover, we use certain Bartlett

identities implied by this assumption to simplify some expressions, but those simplifications are not

crucial for our results. Assumption 4.1(iv) imposes smoothness and moment conditions in the log-

likelihood function and its derivatives. These conditions guarantee that the higher-order stochastic

expansions of the fixed effect estimator that we use to characterize the asymptotic bias are well-defined,

and that the remainder terms of these expansions are bounded. The most commonly used nonlinear

models in applied economics such as logit, probit, ordered probit, Poisson, and Tobit models have smooth

log-likelihoods functions that satisfy the concavity condition of Assumption 4.1(v), provided that all the

elements of Xit have cross sectional and time series variation. Assumption 4.1(v) guarantees that β0

and φ0 are the unique solution to the population problem (2.1), that is all the parameters are point

identified.

To describe the asymptotic distribution of the fixed effects estimator β̂, it is convenient to introduce

some additional notation. Let H be the (N +T )× (N+T ) expected Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.

H = Eφ[−∂φφ′L] =
(

H∗
(αα) H∗

(αγ)

[H∗
(αγ)]

′ H∗
(γγ)

)
+

b√
NT

vv′, (4.2)

where H∗
(αα) = diag(

∑
t Eφ[−∂π2ℓit])/

√
NT , H∗

(αγ)it = Eφ[−∂π2ℓit]/
√
NT , and H∗

(γγ) =

diag(
∑

i Eφ[−∂π2ℓit])/
√
NT . Furthermore, let H−1

(αα), H−1

(αγ), H−1

(γα), and H−1

(γγ) denote the N × N ,

N ×T , T ×N and T ×T blocks of the inverse H−1
of H. It is convenient to define the dimβ-vector Ξit

and the operator Dβπq by

Ξit := − 1√
NT

N∑

j=1

T∑

τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
Eφ (∂βπℓjτ ) ,

Dβπqℓit := ∂βπqℓit − ∂πq+1ℓitΞit, (4.3)

with q = 0, 1, 2. The k-th component of Ξit corresponds to the population least squares projection

of Eφ(∂βkπℓit)/Eφ(∂π2ℓit) on the space spanned by the incidental parameters under a metric given by
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Eφ(−∂π2ℓit), i.e.

Ξit,k = α∗
i,k + γ∗t,k, (α∗

k, γ
∗
k) = argmin

αi,k,γt,k

∑

i,t

Eφ(−∂π2ℓit)

(
Eφ(∂βkπℓit)

Eφ(∂π2ℓit)
− αi,k − γt,k

)2

.

The operatorDβπq generalizes the individual and time differencing transformations from linear models to

nonlinear models. To see this, consider the normal linear model Yit | Xt
i , αi, γt ∼ N (X ′

itβ + αi + γt, 1).

Then, Ξit = T−1
∑T

t=1 Eφ[Xit] + N−1
∑N

i=1 Eφ[Xit] − (NT )−1
∑N

i=1

∑T
t=1 Eφ[Xit], Dβℓit = −X̃itεit,

Dβπℓit = −X̃it, and Dβπ2ℓit = 0, where εit = Yit −X ′
itβ − αi − γt and X̃it = Xit −Ξit is the individual

and time demeaned explanatory variable.

Let E := plimN,T→∞. The following theorem establishes the asymptotic distribution of the fixed

effects estimator β̂.

Theorem 4.1 (Asymptotic distribution of β̂). Suppose that Assumption 4.1 holds, that the following

limits exist

B∞ = −E

[
1

N

N∑

i=1

∑T
t=1

∑T
τ=t Eφ (∂πℓitDβπℓiτ ) +

1
2

∑T
t=1 Eφ(Dβπ2ℓit)∑T

t=1 Eφ (∂π2ℓit)

]
,

D∞ = −E

[
1

T

T∑

t=1

∑N
i=1 Eφ

(
∂πℓitDβπℓit +

1
2Dβπ2ℓit

)
∑N

i=1 Eφ (∂π2ℓit)

]
,

W∞ = −E

[
1

NT

N∑

i=1

T∑

t=1

Eφ (∂ββ′ℓit − ∂π2ℓitΞitΞ
′
it)

]
,

and that W∞ > 0. Then,

√
NT

(
β̂ − β0

)
→d W

−1

∞ N (κB∞ + κ−1D∞, W∞),

so that B
β

∞ =W∞B∞ and D
β

∞ =W∞D∞ in equation (3.2).

Sketch of the Proof. The detailed proof of Theorem 4.1 is provided in the appendix. Here we include

a summary of the main ideas behind the proof.

We start by noting that the existing results for large N, T panels, which were developed for models

with only individual effects, cannot be sequentially applied to the two dimensions of the panel to derive

the asymptotic distribution of our estimators. These results usually start with a consistency proof that

relies on partitioning the log-likelihood in the sum of individual log-likelihoods that depend on a fixed

number of parameters, the model parameter β and the corresponding individual effect αi. Then, the

maximizers of the individual log-likelihood are shown to be consistent estimators of all the parameters

as T becomes large using standard arguments . In the presence of time effects there is no partition of

the data that is only affected by a fixed number of parameters, and whose size grows with the sample

size. We thus require a new approach.

Our approach consists of deriving an asymptotic approximation to the score of the profile log-

likelihood, ∂βL(β, φ̂(β)), which is valid locally around β = β0. We use this approximation to show

that there is a solution to the first order condition ∂βL(β, φ̂(β)) = 0 that is close to β0 asymptoti-

cally, and to characterize the asymptotic properties of this solution. Under the assumption that the
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log-likelihood is strictly concave, the solution to ∂βL(β, φ̂(β)) = 0 uniquely determines the maximizer

β̂, so that we do not need a separate proof of consistency to obtain the asymptotic distribution of our

estimators.

We derive the asymptotic approximation to ∂βL(β, φ̂(β)) using a second-order Taylor stochastic

expansion. This expansion does not rely on the panel structure of the model, but it requires sufficient

differentiability of L(β, φ) and that each incidental parameter affects a subset (namely all observations

from individual i for each individual effect αi, and all observations from time period t for each time

effect γt) whose size grows with the sample size. For our panel model, the latter implies that the score

of the incidental parameters,

S(β, φ) = ∂φL(β, φ) =




[
1√
NT

∑T
t=1 ∂πℓit(β, αi + γt)− b√

NT
v′φ
]
i=1,...,N[

1√
NT

∑N
i=1 ∂πℓit(β, αi + γt) +

b√
NT

v′φ
]
t=1,...,T


 ,

is of a smaller order at the true parameters (β0, φ0) than it is at other parameter values. The entries

of S(β, φ) are of order one generically as N and T grow at the same rate, while the entries of S :=

S(β0, φ0) are of order 1/
√
N or 1/

√
T . This allows us to bound the higher-order terms in a expansion

of ∂βL(β, φ̂(β)) in β and S(β, φ) around β0 and S.
The stochastic expansion of ∂βL(β, φ̂(β)) can be obtained in different ways. We find it convenient to

derive it through the Legendre-transformed objective function L∗(β, S) = maxφ [L(β, φ)− φ′S]. This

function has the properties: L∗(β, 0) = L(β, φ̂(β)), L∗(β, S) = L(β, φ0) − φ0′S, and ∂βL(β, φ0) =

∂βL∗(β, S). The expansion of ∂βL(β, φ̂(β)) = ∂βL∗(β, 0) can therefore be obtained as a Taylor stochas-

tic expansion of ∂βL∗(β, S) in (β, S) around (β0,S) and evaluated at (β, 0), see Appendix B for details.

Theorem B.1 gives the stochastic expansion. To obtain the asymptotic distribution of β̂ from the

expansion, we need to analyze the expected Hessian of the incidental parameters H, which is defined

in (4.2) for our panel model. More precisely, we need to characterize the asymptotic properties of the

inverse of H, because this inverse features prominently in the expansion. For models with only individual

effects, H is diagonal and its inversion poses no difficulty. In our case H has strong diagonal elements

of order 1 and off-diagonal elements of order (NT )−1/2. The off-diagonal elements reflect that the

individual and time effects are compounded in a non-trivial way. They are of smaller order than the

strong diagonal elements, but cannot simply be ignored in the inversion because the number of them is

very large and grows with the sample size. For example, the Hessian H∗
without penalty has the same

structure as H, but is not invertible. Lemma D.8 shows that H is invertible, and that H−1
has the same

structure as H, namely strong diagonal elements of order 1 and off-diagonal elements of order (NT )−1/2.

This result explains why the double incidental parameter problem due to the individual and time effects

decouples asymptotically, so we get that the bias has two leading terms of orders T−1 and N−1. This

result agrees with the intuition that one would draw from analyzing separately the incidental parameter

problem in each dimension, but without a formal derivation it was not clear that the asymptotic bias

also has the simple additive structure in the joint analysis. �

Remark 1 (Bias expressions for Conditional Moment Models). In the derivation of the asymptotic bias,

we apply Bartlett identities implied by Assumption 4.1(iii) to simplify the expressions. The following
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expressions of the bias do not make use of these identities and therefore remain valid in conditional

moment settings that do not specify the entire conditional distribution of Yit:

B∞ = −E

[
1

N

N∑

i=1

∑T
t=1

∑T
τ=t Eφ (∂πℓitDβπℓiτ )∑T
t=1 Eφ (∂π2ℓit)

]

+
1

2
E


 1

N

N∑

i=1

∑T
t=1 Eφ[(∂πℓit)

2]
∑T

t=1 Eφ(Dβπ2ℓit)[∑T
t=1 Eφ (∂π2ℓit)

]2


 ,

D∞ = −E

[
1

T

T∑

t=1

∑N
i=1 Eφ [∂πℓitDβπℓit]∑N

i=1 Eφ (∂π2ℓit)

]

+
1

2
E


 1

T

T∑

t=1

∑N
i=1 Eφ[(∂πℓit)

2]
∑N

i=1 Eφ(Dβπ2ℓit)[∑N
i=1 Eφ (∂π2ℓit)

]2


 .

For example, consider the least squares fixed effects estimator in a linear model Yit = X ′
itβ+αi+γt+εit

with E[εit | Xt
i , φ, β] = 0. Applying the previous expressions to ℓit(β, π) = −(Yit−X ′

itβ−αi−γt)2 yields

B∞ = −E

[
1

NT

N∑

i=1

T∑

t=1

T∑

τ=t+1

Eφ (Xiτεit)

]

and D∞ = 0. The expression for B∞ corresponds to Nickell (1981) bias formula when Xit = Yi,t−1. If

E[εit | XT
i , φ, β] = 0, i.e. Xit is strictly exogenous with respect to εit, then we get the well-known result

for linear models of no asymptotic bias, B∞ = D∞ = 0.

It is instructive to evaluate the expressions of the bias in our running examples.

Example 1 (Binary response model). In this case

ℓit(β, π) = Yit logF (X
′
itβ + π) + (1 − Yit) log[1− F (X ′

itβ + π)],

so that ∂πℓit = Hit(Yit − Fit), ∂βℓit = ∂πℓitXit, ∂π2ℓit = −Hit∂Fit + ∂Hit(Yit − Fit), ∂ββ′ℓit =

∂π2ℓitXitX
′
it, ∂βπℓit = ∂π2ℓitXit, ∂π3ℓit = −Hit∂

2Fit − 2∂Hit∂Fit + ∂2Hit(Yit − Fit), and ∂βπ2ℓit =

∂π3ℓitXit, where Hit = ∂Fit/[Fit(1 − Fit)], and ∂
jGit := ∂jG(Z)|Z=X′

itβ
0+π0

it
for any function G and

j = 0, 1, 2. Substituting these values in the expressions of the bias of Theorem 4.1 yields

B∞ = −E


 1

2N

N∑

i=1

∑T
t=1

{
Eφ[Hit∂

2FitX̃it] + 2
∑T

τ=t+1 Eφ

[
Hit(Yit − Fit)ωiτ X̃iτ

]}

∑T
t=1 Eφ (ωit)


 ,

D∞ = −E

[
1

2T

T∑

t=1

∑N
i=1 Eφ[Hit∂

2FitX̃it]∑N
i=1 Eφ (ωit)

]
,

W∞ = E

[
1

NT

N∑

i=1

T∑

t=1

Eφ[ωitX̃itX̃
′
it]

]
,

where ωit = Hit∂Fit and X̃it is the residual of the population projection of Xit on the space spanned

by the incidental parameters under a metric weighted by Eφ(ωit). For the probit model with all the
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components of Xit strictly exogenous,

B∞ = E

[
1

2N

N∑

i=1

∑T
t=1 Eφ[ωitX̃itX̃

′
it]∑T

t=1 Eφ (ωit)

]
β0, D∞ = E

[
1

2T

T∑

t=1

∑N
i=1 Eφ[ωitX̃itX̃

′
it]∑N

i=1 Eφ (ωit)

]
β0.

The asymptotic bias is therefore a positive definite matrix weighted average of the true parameter value

as in the case of the probit model with only individual effects (Fernández-Val, 2009).

Example 2 (Count response model). In this case

ℓit(β, π) = (X ′
itβ + π)Yit − exp(X ′

itβ + π)− log Yit!,

so that ∂πℓit = Yit − ωit, ∂βℓit = ∂πℓitXit, ∂π2ℓit = ∂π3ℓit = −ωit, ∂ββ′ℓit = ∂π2ℓitXitX
′
it, and ∂βπℓit =

∂βπ2ℓit = ∂π3ℓitXit, where ωit = exp(X ′
itβ

0 + π0
it). Substituting these values in the expressions of the

bias of Theorem 4.1 yields

B∞ = −E


 1

N

N∑

i=1

∑T
t=1

∑T
τ=t+1 Eφ

[
(Yit − ωit)ωiτ X̃iτ

]

∑T
t=1 Eφ (ωit)


 ,

W∞ = E

[
1

NT

N∑

i=1

T∑

t=1

Eφ[ωitX̃itX̃
′
it]

]
,

and D∞ = 0, where X̃it is the residual of the population projection of Xit on the space spanned by the

incidental parameters under a metric weighted by Eφ(ωit). If in addition all the components of Xit are

strictly exogenous, then we get the no asymptotic bias result B∞ = D∞ = 0.

4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to the model parameters. These effects

are averages of the data, parameters and unobserved effects; see expression (2.2). For the panel models

of Assumption 4.1 we specify the partial effects as ∆(Xit, β, αi, γt) = ∆it(β, πit). The restriction that

the partial effects depend on αi and γt through πit is natural in our panel models since

E[Yit | Xt
i , αi, γt, β] =

∫
y exp[ℓit(β, πit)]dy,

and the partial effects are usually defined as differences or derivatives of this conditional expectation

with respect to the components of Xit. For example, the partial effects for the probit and Poisson models

described in Section 2 satisfy this restriction.

The distribution of the unobserved individual and time effects is not ancillary for the APEs, unlike for

model parameters. We therefore need to make assumptions on this distribution to define and interpret

the APEs, and to derive the asymptotic distribution of their estimators. Here, there are several possi-

bilities depending on whether we define the APE conditional or unconditional on the unobserved effects.

For conditional APEs, we treat the unobserved effects as deterministic. In this case E[∆it] = Eφ[∆it]

and δ0NT = (NT )−1
∑

i,t Eφ[∆it] can change over T and N in a deterministic fashion. For uncondi-

tional APEs, we control the heterogeneity of the partial effects assuming that the individual effects

and explanatory variables are identically distributed cross sectionally and/or stationary over time. If
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(Xit, αi, γt) is identically distributed over i and can be heterogeneously distributed over t, E[∆it] = δ0t

and δ0NT = T−1
∑T

t=1 δ
0
t changes only with T . If (Xit, αi, γt) is stationary over t and can be hetero-

geneously distributed over i, E[∆it] = δ0i and δ0NT = N−1
∑N

i=1 δ
0
i changes only with N . Finally, if

(Xit, αi, γt) is identically distributed over i and stationary over t, E[∆it] = δ0NT and δ0NT = δ0 does not

change with N and T.

We also impose smoothness and moment conditions on the function ∆ that defines the partial effects.

We use these conditions to derive higher-order stochastic expansions for the fixed effect estimator of the

APEs and to bound the remainder terms in these expansions. Let {αi}N := {αi : 1 ≤ i ≤ N},
{γt}T := {γt : 1 ≤ t ≤ T }, and {Xit, αi, γt}NT := {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T }.

Assumption 4.2 (Partial effects). Let ν > 0, ǫ > 0, and B0
ε all be as in Assumption 4.1.

(i) Sampling: for all N, T, (a) {αi}N and {γt}T are deterministic; or (b) {Xit, αi, γt}NT is identically

distributed across i and/or stationary across t.

(ii) Model: for all i, t, N, T, the partial effects depend on αi and γt through αi + γt:

∆(Xit, β, αi, γt) = ∆it(β, αi + γt).

The realizations of the partial effects are denoted by ∆it := ∆it(β
0, α0

i + γ0t ).

(iii) Smoothness and moments: The function (β, π) 7→ ∆it(β, π) is four times continuously differentiable

over B0
ε a.s. The partial derivatives of ∆it(β, π) with respect to the elements of (β, π) up to fourth

order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function M(Zit) > 0 a.s., and

maxi,t Eφ[M(Zit)
8+ν ] is a.s. uniformly bounded over N, T .

(iv) Non-degeneracy and moments: 0 < mini,t[E(∆
2
it) − E(∆it)

2] ≤ maxi,t[E(∆
2
it) − E(∆it)

2] < ∞,

uniformly over N, T.

Analogous to Ξit in equation (4.3) we define

Ψit = − 1√
NT

N∑

j=1

T∑

τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
∂π∆jτ , (4.4)

which is the population projection of ∂π∆it/Eφ[∂π2ℓit] on the space spanned by the incidental parameters

under the metric given by Eφ[−∂π2ℓit]. We use analogous notation to the previous section for the

derivatives with respect to β and higher order derivatives with respect to π.

Let δ0NT and δ̂ be the APE and its fixed effects estimator, defined as in equations (2.2) and (2.9)

with ∆(Xit, β, αi, γt) = ∆it(β, αi + γt).
9 The following theorem establishes the asymptotic distribution

of δ̂.

Theorem 4.2 (Asymptotic distribution of δ̂). Suppose that the assumptions of Theorem 4.1 and As-

9We keep the dependence of δ0NT on NT to distinguish δ0NT from δ0 = limN,T→∞ δ0NT .
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sumption 4.2 hold, and that the following limits exist:

(Dβ∆)∞ = E

[
1

NT

N∑

i=1

T∑

t=1

Eφ(∂β∆it − Ξit∂π∆it)

]
,

B
δ

∞ = (Dβ∆)
′
∞W

−1

∞ B∞ + E

[
1

N

N∑

i=1

∑T
t=1

∑T
τ=t Eφ (∂πℓit∂π2ℓiτΨiτ )∑T
t=1 Eφ (∂π2ℓit)

]

− E

[
1

2N

N∑

i=1

∑T
t=1 [Eφ(∂π2∆it)− Eφ(∂π3ℓit)Eφ(Ψit)]∑T

t=1 Eφ (∂π2ℓit)

]
,

D
δ

∞ = (Dβ∆)
′
∞W

−1

∞ D∞ + E

[
1

T

T∑

t=1

∑N
i=1 Eφ (∂πℓit∂π2ℓitΨit)∑N

i=1 Eφ (∂π2ℓit)

]

− E

[
1

2T

T∑

t=1

∑N
i=1 [Eφ(∂π2∆it)− Eφ(∂π3ℓit)Eφ(Ψit)]∑N

i=1 Eφ (∂π2ℓit)

]
,

V
δ

∞ = E





r2NT

N2T 2
E



(

N∑

i=1

T∑

t=1

∆̃it

)(
N∑

i=1

T∑

t=1

∆̃it

)′

+

N∑

i=1

T∑

t=1

ΓitΓ
′
it





 ,

for some deterministic sequence rNT → ∞ such that rNT = O(
√
NT ) and V

δ

∞ > 0, where ∆̃it =

∆it − E(∆it) and Γit = (Dβ∆)
′
∞W

−1

∞ Dβℓit − Eφ(Ψit)∂πℓit. Then,

rNT (δ̂ − δ0NT − T−1B
δ

∞ −N−1D
δ

∞) →d N (0, V
δ

∞).

Remark 2 (Convergence rate, bias and variance). The rate of convergence rNT is determined by the in-

verse of the first term of V
δ

∞, which corresponds to the asymptotic variance of δ := (NT )−1
∑N

i=1

∑T
t=1 ∆it,

r2NT = O


 1

N2T 2

N∑

i,j=1

T∑

t,s=1

E[∆̃it∆̃
′
js]




−1

.

Assumption 4.2(iv) and the condition rNT → ∞ ensure that we can apply a central limit theorem to δ.

Under Assumption 4.2(i)(a), {∆it : 1 ≤ i ≤ N, 1 ≤ t ≤ T } is independent across i and α-mixing across

t by Assumption 4.1(ii), so that rNT =
√
NT and

V
δ

∞ = E

{
r2NT

N2T 2

N∑

i=1

[
T∑

t,τ=1

E(∆̃it∆̃
′
iτ ) +

T∑

t=1

E(ΓitΓ
′
it)

]}
.

Bias and variance are of the same order asymptotically under the asymptotic sequences of Assump-

tion 4.1(i). Under Assumption 4.2(i)(b), the rate of convergence depends on the sampling properties of

the unobserved effects. For example, if {αi}N and {γt}T are independent sequences, and αi and γt are

independent for all i, t, then rNT =
√
NT/(N + T − 1),

V
δ

∞ = E





r2NT

N2T 2

N∑

i=1




T∑

t,τ=1

E(∆̃it∆̃
′
iτ ) +

∑

j 6=i

T∑

t=1

E(∆̃it∆̃
′
jt) +

T∑

t=1

E(ΓitΓ
′
it)





 ,

and the asymptotic bias is of order T−1/2+N−1/2. The bias and the last term of V
δ

∞ are asymptotically

negligible in this case under the asymptotic sequences of Assumption 4.1(i).

18



Remark 3 (Average effects from bias corrected estimators). The first term in the expressions of the

biases B
δ

∞ and D
δ

∞ comes from the bias of the estimator of β. It drops out when the APEs are constructed

from asymptotically unbiased or bias corrected estimators of the parameter β, i.e.

δ̃ = ∆(β̃, φ̂(β̃)),

where β̃ is such that
√
NT (β̃ − β0) →d N(0,W

−1

∞ ). The asymptotic variance of δ̃ is the same as in

Theorem 4.2.

In the following examples we assume that the APEs are constructed from asymptotically unbiased

estimators of the model parameters.

Example 1 (Binary response model). Consider the partial effects defined in (2.3) and (2.4) with

∆it(β, π) = F (βk +X ′
it,−kβ−k + π)− F (X ′

it,−kβ−k + π) and ∆it(β, π) = βk∂F (X
′
itβ + π).

Using the notation previously introduced for this example, the components of the asymptotic bias of δ̃

are

B
δ

∞ = E

[
1

2N

N∑

i=1

∑T
t=1[2

∑T
τ=t+1 Eφ(Hit(Yit−Fit)ωiτ Ψ̃iτ)−Eφ(Ψit)Eφ(Hit∂

2Fit)+Eφ(∂π2∆it)]∑
T
t=1 Eφ(ωit)

]
,

D
δ

∞ = E

[
1

2T

T∑

t=1

∑N
i=1

[
−Eφ(Ψit)Eφ(Hit∂

2Fit) + Eφ(∂π2∆it)
]

∑N
i=1 Eφ (ωit)

]
,

where Ψ̃it is the residual of the population regression of −∂π∆it/Eφ[ωit] on the space spanned by the inci-

dental parameters under the metric given by Eφ[ωit]. If all the components of Xit are strictly exogenous,

the first term of B
δ

∞ is zero.

Example 2 (Count response model). Consider the partial effect

∆it(β, π) = git(β) exp(X
′
itβ + π),

where git does not depend on π. For example, git(β) = βk + βjh(Zit) in (2.5). Using the notation

previously introduced for this example, the components of the asymptotic bias are

B
δ

∞ = E

[
1

N

N∑

i=1

∑T
t=1

∑T
τ=t+1 Eφ [(Yit − ωit)ωiτ g̃iτ ]∑T

t=1 Eφ (ωit)

]
,

and D
δ

∞ = 0, where g̃it is the residual of the population projection of git on the space spanned by

the incidental parameters under a metric weighted by Eφ[ωit]. The asymptotic bias is zero if all the

components of Xit are strictly exogenous or git(β) is constant. The latter arises in the leading case of

the partial effect of the k-th component of Xit since git(β) = βk. This no asymptotic bias result applies

to any type of regressor, strictly exogenous or predetermined.

4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed effects estimators

of the model parameters and APEs can have biases of the same order as the variances under sequences
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where T grows at the same rate as N . This is the large-T version of the incidental parameters problem

that invalidates any inference based on the asymptotic distribution. In this section we describe how to

construct analytical bias corrections for panel models and give conditions for the asymptotic validity of

analytical and jackknife bias corrections.

The jackknife correction for the model parameter β in equation (3.4) is generic and applies to the

panel model. For the APEs, the jackknife correction is formed similarly as

δ̃JNT = 3δ̂NT − δ̃N,T/2 − δ̃N/2,T ,

where δ̃N,T/2 is the average of the 2 split jackknife estimators of the APE that leave out the first and

second halves of the time periods, and δ̃N/2,T is the average of the 2 split jackknife estimators of the

APE that leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in Theorems 4.1

and 4.2, replacing the true values of β and φ by the fixed effects estimators. To describe these corrections,

we introduce some additional notation. For any function of the data, unobserved effects and parameters

gitj(β, αi + γt, αi + γt−j) with 0 ≤ j < t, let ĝitj = git(β̂, α̂i + γ̂t, α̂i + γ̂t−j) denote the fixed effects

estimator, e.g., ̂Eφ[∂π2ℓit] denotes the fixed effects estimator of Eφ[∂π2ℓit]. Let Ĥ−1
(αα), Ĥ−1

(αγ), Ĥ−1
(γα), and

Ĥ−1
(γγ) denote the blocks of the matrix Ĥ−1, where

Ĥ =

(
Ĥ∗

(αα) Ĥ∗
(αγ)

[Ĥ∗
(αγ)]

′ Ĥ∗
(γγ)

)
+

b√
NT

vv′,

Ĥ∗
(αα) = diag(−∑t

̂Eφ[∂π2ℓit])/
√
NT , Ĥ∗

(αα) = diag(−∑i
̂Eφ[∂π2ℓit])/

√
NT , and Ĥ∗

(αγ)it = − ̂Eφ[∂π2ℓit]/
√
NT .

Let

Ξ̂it = − 1√
NT

N∑

j=1

T∑

τ=1

(
Ĥ−1

(αα)ij + Ĥ−1
(γα)tj + Ĥ−1

(αγ)iτ + Ĥ−1
(γγ)tτ

)
̂Eφ (∂βπℓjτ ).

The k-th component of Ξ̂it corresponds to a least squares regression of ̂Eφ (∂βkπℓit)/
̂Eφ(∂π2ℓit) on the

space spanned by the incidental parameters weighted by ̂Eφ(−∂π2ℓit).

The analytical bias corrected estimator of β0 is

β̃A = β̂ − B̂/T − D̂/N,

where

B̂ = − 1

N

N∑

i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1

̂Eφ (∂πℓi,t−jDβπℓit) +
1
2

∑T
t=1

̂Eφ(Dβπ2ℓit)
∑T

t=1
̂Eφ (∂π2ℓit)

,

D̂ = − 1

T

T∑

t=1

∑N
i=1

[
̂Eφ (∂πℓitDβπℓit) +

1
2

̂Eφ

(
Dβπ2ℓit

)]

∑N
i=1

̂Eφ (∂π2ℓit)
,

and L is a trimming parameter for estimation of spectral expectations such that L→ ∞ and L/T → 0

(Hahn and Kuersteiner, 2011). The factor T/(T − j) is a degrees of freedom adjustment that rescales

the time series averages T−1
∑T

t=j+1 by the number of observations instead of by T . Unlike for variance
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estimation, we do not need to use a kernel function because the bias estimator does not need to be

positive. Asymptotic (1− p)–confidence intervals for the components of β0 can be formed as

β̃A
k ± z1−p

√
Ŵ−1

kk /(NT ), k = {1, ..., dimβ0},

where z1−p is the (1 − p)–quantile of the standard normal distribution, and Ŵ−1
kk is the (k, k)-element

of the matrix Ŵ−1 with

Ŵ = −(NT )−1
N∑

i=1

T∑

t=1

[
̂Eφ (∂ββ′ℓit)− ̂Eφ (∂π2ℓitΞitΞ′

it)
]
. (4.5)

The analytical bias corrected estimator of δ0NT is

δ̃A = δ̂ − B̂δ/T − D̂δ/N,

where δ̃ is the APE constructed from a bias corrected estimator of β. Let

Ψ̂it = − 1√
NT

N∑

j=1

T∑

τ=1

(
Ĥ−1

(αα)ij + Ĥ−1
(γα)tj + Ĥ−1

(αγ)iτ + Ĥ−1
(γγ)tτ

)
∂̂π∆jτ .

The fixed effects estimators of the components of the asymptotic bias are

B̂δ =
1

N

N∑

i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1

̂Eφ (∂πℓi,t−j∂π2ℓitΨit)
∑T

t=1
̂Eφ (∂π2ℓit)

− 1

2N

N∑

i=1

∑T
t=1

[
̂Eφ(∂π2∆it)− ̂Eφ(∂π3ℓit)Êφ(Ψit)

]

∑T
t=1

̂Eφ (∂π2ℓit)
,

D̂δ =
1

T

T∑

t=1

∑N
i=1

[
̂Eφ (∂πℓit∂π2ℓitΨit)− 1

2
̂Eφ(∂π2∆it) +

1
2

̂Eφ(∂π3ℓit)Êφ(Ψit)
]

∑N
i=1

̂Eφ (∂π2ℓit)
.

The estimator of the asymptotic variance depends on the assumptions about the distribution of the

unobserved effects and explanatory variables. Under Assumption 4.2(i)(a) we need to impose an ho-

mogeneity assumption on the distribution of the explanatory variables to estimate the first term of the

asymptotic variance. For example, if {Xit : 1 ≤ i ≤ N, 1 ≤ t ≤ T } is identically distributed over i, we

can form

V̂ δ =
r2NT

N2T 2

N∑

i=1

[
T∑

t,τ=1

̂̃∆it
̂̃∆
′
iτ +

T∑

t=1

̂Eφ(ΓitΓ′
it)

]
, (4.6)

for ̂̃∆it = ∆̂it − N−1
∑N

i=1 ∆̂it. Under Assumption 4.2(i)(b) and the independence assumption on the

unobserved effects of Remark 2,

V̂ δ =
r2NT

N2T 2

N∑

i=1




T∑

t,τ=1

̂̃∆it
̂̃∆
′
iτ +

T∑

t=1

∑

j 6=i

̂̃∆it
̂̃∆
′
jt +

T∑

t=1

̂Eφ(ΓitΓ′
it)


 , (4.7)

where ̂̃∆it = ∆̂it −N−1
∑N

i=1 ∆̂it under identical distribution over i, ̂̃∆it = ∆̂it − T−1
∑T

t=1 ∆̂it under

stationarity over t, and ̂̃∆it = ∆̂it − δ̂ under both. Note that we do not need to specify the convergence
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rate to make inference because the standard errors
√
V̂ δ/rNT do not depend on rNT . Bias corrected

estimators and confidence intervals can be constructed in the same fashion as for the model parameter.

We use the following homogeneity assumption to show the validity of the jackknife corrections for

the model parameters and APEs. It ensures that the asymptotic bias is the same in all the partitions

of the panel. The analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional homogeneity). The sequence {(Yit, Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T }
is identically distributed across i and strictly stationary across t, for each N, T.

This assumption might seem restrictive for dynamic models where Xit includes lags of the dependent

variable because in this case it restricts the unconditional distribution of the initial conditions of Yit.

Note, however, that Assumption 4.3 allows the initial conditions to depend on the unobserved effects. In

other words, it does not impose that the initial conditions are generated from the stationary distribution

of Yit conditional on Xit and φ. Assumption 4.3 rules out structural breaks in the processes for the

unobserved effects and observed variables. For APEs, it also imposes that these effects do not change

with T and N , i.e. δ0NT = δ0.

Remark 4 (Test of homogeneity). Assumption 4.3 is a sufficient condition for the validity of the

jackknife corrections. The weaker condition that the asymptotic biases are the same in all the partitions

of the panel can be tested using the Chow-type test recently proposed in Dhaene and Jochmans (2014).

We provide examples of the application of this test to our setting in Section 6.

The following theorems are the main result of this section. They show that the analytical and jack-

knife bias corrections eliminate the bias from the asymptotic distribution of the fixed effects estimators of

the model parameters and APEs without increasing variance, and that the estimators of the asymptotic

variances are consistent.

Theorem 4.3 (Bias corrections for β̂). Under the conditions of Theorems 4.1,

Ŵ →P W∞,

and, if L→ ∞ and L/T → 0, √
NT (β̃A − β0) →d N (0,W

−1

∞ ).

Under the conditions of Theorems 4.1 and Assumption 4.3,
√
NT (β̃J − β0) →d N (0,W

−1

∞ ).

Theorem 4.4 (Bias corrections for δ̂). Under the conditions of Theorems 4.1 and 4.2,

V̂ δ →P V
δ

∞,

and, if L→ ∞ and L/T → 0,

rNT (δ̃
A − δ0NT ) →d N (0, V

δ

∞).

Under the conditions of Theorems 4.1 and 4.2, and Assumption 4.3,

rNT (δ̃
J − δ0) →d N (0, V

δ

∞).

Remark 5 (Rate of convergence). The rate of convergence rNT depends on the properties of the sampling

process for the explanatory variables and unobserved effects (see remark 2).
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5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model parameters

and APEs in static models with strictly exogenous regressors and dynamic models with predetermined

regressors such as lags of the dependent variable. We analyze the performance of uncorrected and bias-

corrected fixed effects estimators in terms of bias and inference accuracy of their asymptotic distribution.

In particular we compute the biases, standard deviations, and root mean squared errors of the estimators,

the ratio of average standard errors to the simulation standard deviations (SE/SD); and the empirical

coverages of confidence intervals with 95% nominal value (p; .95).10 Overall, we find that the analytically

corrected estimators dominate the uncorrected and jackknife corrected estimators. All the results are

based on 500 replications.

5.1 Example 1: binary response models

The designs correspond to static and dynamic probit models. We consider panels with a cross sectional

size of 52 individuals, motivated by applications to U.S. states.

5.1.1 Static probit model

The data generating process is

Yit = 1 {Xitβ + αi + γt > εit} , (i = 1, ..., N ; t = 1, ..., T ),

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1), and β = 1. We consider two alternative designs

for Xit: correlated and uncorrelated with the individual and time effects. In the first design, Xit =

Xi,t−1/2+αi+ γt+ υit, υit ∼ N (0, 1/2), and Xi0 ∼ N (0, 1). In the second design, Xit = Xi,t−1/2+ υit,

υit ∼ N (0, 3/4), and Xi0 ∼ N (0, 1). In both designs Xit is strictly exogenous with respect to εit

conditional to the individual and time effects, and has an unconditional variance equal to one. The

variables αi, γt, εit, υit, and Xi0 are independent and i.i.d. across individuals and time periods. We

generate panel data sets with N = 52 individuals and three different numbers of time periods T : 14, 26

and 52.

Table 3 reports the results for the probit coefficient β, and the APE of Xit. We compute the APE

using (2.4). Throughout the table, MLE-FETE corresponds to the probit maximum likelihood estimator

with individual and time fixed effects, Analytical is the bias corrected estimator that uses the analytical

correction, and Jackknife is the bias corrected estimator that uses SPJ in both the individual and time

dimensions. The cross-sectional division in the jackknife follows the order of the observations. All the

results are reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the standard deviation for the uncorrected

estimator of the probit coefficient causing severe undercoverage of the confidence intervals. This result

holds for both designs and all the sample sizes considered. The bias corrections, specially Analytical,

10The standard errors are computed using the expressions (4.5), (4.6) and (4.7) evaluated at uncorrected estimates of the

parameters.
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remove the bias without increasing dispersion, and produce substantial improvements in rmse and cov-

erage probabilities. For example, Analytical reduces rmse by more than 40 % and increases coverage by

20% in the correlated design with T = 14. As in Hahn and Newey (2004) and Fernandez-Val (2009),

we find very little bias in the uncorrected estimates of the APE, despite the large bias in the probit

coefficients.

5.1.2 Dynamic probit model

The data generating process is

Yit = 1 {Yi,t−1βY + ZitβZ + αi + γt > εit} , (i = 1, ..., N ; t = 1, ..., T ),

Yi0 = 1 {Zi0βZ + αi + γ0 > εi0} ,

where αi ∼ N (0, 1/16), γt ∼ N (0, 1/16), εit ∼ N (0, 1), βY = 0.5, and βZ = 1. We consider two

alternative designs for Zit: correlated an uncorrelated with the individual and time effects. In the first

design, Zit = Zi,t−1/2 + αi + γt + υit, υit ∼ N (0, 1/2), and Zi0 ∼ N (0, 1). In the second design,

Zit = Zi,t−1/2 + υit, υit ∼ N (0, 3/4), and Zi0 ∼ N (0, 1). The unconditional variance of Zit is one in

both designs. The variables αi, γt, εit, υit, and Zi0 are independent and i.i.d. across individuals and

time periods. We generate panel data sets with N = 52 individuals and three different numbers of time

periods T : 14, 26 and 52.

Table 4 reports the simulation results for the probit coefficient βY and the APE of Yi,t−1. We

compute the partial effect of Yi,t−1 using the expression in equation (2.3) with Xit,k = Yi,t−1. This

effect is commonly reported as a measure of state dependence for dynamic binary processes. Table 5

reports the simulation results for the estimators of the probit coefficient βZ and the APE of Zit. We

compute the partial effect using (2.4) with Xit,k = Zit. Throughout the tables, we compare the same

estimators as for the static model. For the analytical correction we consider two versions, Analytical

(L=1) sets the trimming parameter to estimate spectral expectations L to one, whereas Analytical (L=2)

sets L to two. Again, all the results in the tables are reported in percentage of the true parameter value.

The results in table 4 show important biases toward zero for both the probit coefficient and the

APE of Yi,t−1 in the two designs. This bias can indeed be substantially larger than the corresponding

standard deviation for short panels yielding coverage probabilities below 70% for T = 14. The analytical

corrections significantly reduce biases and rmse, bring coverage probabilities close to their nominal

level, and have little sensitivity to the trimming parameter L. The jackknife corrections reduce bias

but increase dispersion, producing less drastic improvements in rmse and coverage than the analytical

corrections. The results for Zit in table 5 are similar to the static probit model. There are significant

bias and undercoverage of confidence intervals for the coefficient, which are removed by the corrections,

whereas there are little bias and undercoverage in the APEs.

5.2 Example 2: count response models

The designs correspond to static and dynamic Poisson models with additive individual and time effects.

Motivated by the empirical example in next section, we calibrate all the parameters and exogenous

variables using the dataset from Aghion, Bloom, Blundell, Griffith and Howitt (2005) (ABBGH). They
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estimated the relationship between competition and innovation using an unbalanced panel dataset of 17

industries over the 22 years period 1973–1994. The dependent variable is number of patents.

5.2.1 Static Poisson model

The data generating process is

Yit | ZT
i , α, γ ∼ P(exp[Zitβ1 + Z2

itβ2 + αi + γt]), (i = 1, ..., N ; t = 1, ..., T ),

where P denotes the Poisson distribution. The variable Zit is fixed to the values of the competition

variable in the dataset and all the parameters are set to the fixed effect estimates of the model. We

generate unbalanced panel data sets with T = 22 years and three different numbers of industries N : 17,

34, and 51. In the second (third) case, we double (triple) the cross-sectional size by merging two (three)

independent realizations of the panel.

Table 6 reports the simulation results for the coefficients β1 and β2, and the APE of Zit. We com-

pute the APE using the expression (2.5) with H(Zit) = Z2
it. Throughout the table, MLE corresponds

to the pooled Poisson maximum likelihood estimator (without individual and time effects), MLE-TE

corresponds to the Poisson estimator with only time effects, MLE-FETE corresponds to the Poisson

maximum likelihood estimator with individual and time fixed effects, Analytical (L=l) is the bias cor-

rected estimator that uses the analytical correction with L = l, and Jackknife is the bias corrected

estimator that uses SPJ in both the individual and time dimensions. The analytical corrections are

different from the uncorrected estimator because they do not use that the regressor Zit is strictly ex-

ogenous. The cross-sectional division in the jackknife follows the order of the observations. The choice

of these estimators is motivated by the empirical analysis of ABBGH. All the results in the table are

reported in percentage of the true parameter value.

The results of the table agree with the no asymptotic bias result for the Poisson model with exogenous

regressors. Thus, the bias of MLE-FETE for the coefficients and APE is negligible relative to the

standard deviation and the coverage probabilities get close to the nominal level as N grows. The

analytical corrections preserve the performance of the estimators and have very little sensitivity to the

trimming parameter. The jackknife correction increases dispersion and rmse, specially for the small

cross-sectional size of the application. The estimators that do not control for individual effects are

clearly biased.

5.2.2 Dynamic Poisson model

The data generating process is

Yit | Y t−1
i , Zt

i , α, γ ∼ P(exp[βY log(1 + Yi,t−1) + Zitβ1 + Z2
itβ2 + αi + γt]), (i = 1, ..., N ; t = 1, ..., T ).

The competition variable Zit and the initial condition for the number of patents Yi0 are fixed to the

values in the dataset and all the parameters are set to the fixed effect estimates of the model. To generate

panels, we first impute values to the missing observations of Zit using forward and backward predictions

from a panel AR(1) linear model with individual and time effects. We then draw panel data sets with

T = 21 years and three different numbers of industries N : 17, 34, and 51. As in the static model, we
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double (triple) the cross-sectional size by merging two (three) independent realizations of the panel. We

make the generated panels unbalanced by dropping the values corresponding to the missing observations

in the original dataset.

Table 7 reports the simulation results for the coefficient β0
Y and the APE of Yi,t−1. The estimators

considered are the same as for the static Poisson model above. We compute the partial effect of Yi,t−1

using (2.5) with Zit = Yi,t−1, H(Zit) = log(1 + Zit), and dropping the linear term. Table 8 reports the

simulation results for the coefficients β0
1 and β0

2 , and the APE of Zit. We compute the partial effect

using (2.5) with H(Zit) = Z2
it. Again, all the results in the tables are reported in percentage of the true

parameter value.

The results in table 7 show biases of the same order of magnitude as the standard deviation for

the fixed effects estimators of the coefficient and APE of Yi,t−1, which cause severe undercoverage

of confidence intervals. Note that in this case the rate of convergence for the estimator of the APE is

rNT =
√
NT , because the individual and time effects are hold fixed across the simulations. The analytical

corrections reduce bias by more than half without increasing dispersion, substantially reducing rmse and

bringing coverage probabilities closer to their nominal levels. The jackknife corrections reduce bias and

increase dispersion leading to lower improvements in rmse and coverage probability than the analytical

corrections. The results for the coefficient of Zit in table 8 are similar to the static model. The results

for the APE of Zit are imprecise, because the true value of the effect is close to zero.

6 Empirical Example

To illustrate the bias corrections with real data, we revisit the empirical application of Aghion, Bloom,

Blundell, Griffith and Howitt (2005) that estimated a count data model to analyze the relationship

between innovation and competition. They used an unbalanced panel of seventeen U.K. industries

followed over the 22 years between 1973 and 1994.11 The dependent variable, Yit, is innovation as

measured by a citation-weighted number of patents, and the explanatory variable of interest, Zit, is

competition as measured by one minus the Lerner index in the industry-year.

Following ABBGH we consider a quadratic static Poisson model with industry and year effects where

Yit | ZT
i , αi, γt ∼ P(exp[β1Zit + β2Z

2
it + αi + γt]),

for (i = 1, ..., 17; t = 1973, ..., 1994), and extend the analysis to a dynamic Poisson model with industry

and year effects where

Yit | Y t−1
i , Zt

i , αi, γ
t ∼ P(exp[βY log(1 + Yi,t−1) + β1Zit + β2Z

2
it + αi + γt]),

for (i = 1, ..., 17; t = 1974, ..., 1994). In the dynamic model we use the year 1973 as the initial condition

for Yit.

Table 9 reports the results of the analysis. Columns (2) and (3) for the static model replicate

the empirical results of Table I in ABBGH (p. 708), adding estimates of the APEs. Columns (4)

11We assume that the observations are missing at random conditional on the explanatory variables and unobserved effects

and apply the corrections without change since the level of attrition is low in this application.
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and (5) report estimates of the analytical corrections that do not assume that competition is strictly

exogenous with L = 1 and L = 2, and column (6) reports estimates of the jackknife bias corrections

described in (3.4). Note that we do not need to report separate standard errors for the corrected

estimators, because the standard errors of the uncorrected estimators are consistent for the corrected

estimators under the asymptotic approximation that we consider.12 Overall, the corrected estimates,

while numerically different from the uncorrected estimates in column (3), agree with the inverted-U

pattern in the relationship between innovation and competition found by ABBGH. The close similarity

between the uncorrected and bias corrected estimates gives some evidence in favor of the strict exogeneity

of competition with respect to the innovation process.

The results for the dynamic model show substantial positive state dependence in the innovation

process that is not explained by industry heterogeneity. Uncorrected fixed effects underestimates the

coefficient and APE of lag patents relative to the bias corrections, specially relative to the jackknife.

The pattern of the differences between the estimates is consistent with the biases that we find in the

numerical example in Table 7. Accounting for state dependence does not change the inverted-U pattern,

but flattens the relationship between innovation and competition.

Table 10 implements Chow-type homogeneity tests for the validity of the jackknife corrections. These

tests compare the uncorrected fixed effects estimators of the common parameters within the elements of

the cross section and time series partitions of the panel. Under time homogeneity, the probability limit

of these estimators is the same, so that a standard Wald test can be applied based on the difference

of the estimators in the sub panels within the partition. For the static model, the test is rejected at

the 1% level in both the cross section and time series partitions. Since the cross sectional partition is

arbitrary, these rejection might be a signal of model misspecification. For the dynamic model, the test

is rejected at the 1% level in the time series partition, but it cannot be rejected at conventional levels in

the cross section partition. The rejection of the time homogeneity might explain the difference between

the jackknife and analytical corrections in the dynamic model.

7 Concluding remarks

In this paper we develop analytical and jackknife corrections for fixed effects estimators of model pa-

rameters and APEs in semi parametric nonlinear panel models with additive individual and time effects.

Our analysis applies to conditional maximum likelihood estimators with concave log-likelihood functions,

and therefore covers logit, probit, ordered probit, ordered logit, Poisson, negative binomial, and Tobit

estimators, which are the most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear models with interactive individual and

time effects (Chen, Fernández-Val, and Weidner (2013)). Another interesting avenue of future research

is to derive higher-order expansions for fixed effects estimators with individual and time effects. These

expansions are needed to justify theoretically the validity of alternative corrections based on the leave-

one-observation-out panel jackknife method of Hahn and Newey (2004).

12In numerical examples, we find very little gains in terms of the ratio SE/SD and coverage probabilities when we reestimate

the standard errors using bias corrected estimates.
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Appendix

A Notation and Choice of Norms

We write A′ for the transpose of a matrix or vector A. We use 1n for the n × n identity matrix, and

1n for the column vector of length n whose entries are all unity. For square n × n matrices B, C, we

use B > C (or B ≥ C) to indicate that B − C is positive (semi) definite. We write wpa1 for “with

probability approaching one” and wrt for “with respect to”. All the limits are taken as N, T → ∞
jointly.

As in the main text, we usually suppress the dependence on NT of all the sequences of functions

and parameters to lighten the notation, e.g. we write L for LNT and φ for φNT . Let

S(β, φ) = ∂φL(β, φ), H(β, φ) = −∂φφ′L(β, φ),

where ∂xf denotes the partial derivative of f with respect to x, and additional subscripts denote higher-

order partial derivatives. We refer to the dimφ-vector S(β, φ) as the incidental parameter score, and to

the dimφ × dimφ matrix H(β, φ) as the incidental parameter Hessian. We omit the arguments of the

functions when they are evaluated at the true parameter values (β0, φ0), e.g. H = H(β0, φ0). We use

a bar to indicate expectations conditional on φ, e.g. ∂βL = Eφ[∂βL], and a tilde to denote variables in

deviations with respect to expectations, e.g. ∂βL̃ = ∂βL − ∂βL.
We use the Euclidian norm ‖.‖ for vectors of dimension dimβ, and we use the norm induced by the

Euclidian norm for the corresponding matrices and tensors, which we also denote by ‖.‖. For matrices

of dimension dimβ × dimβ this induced norm is the spectral norm. The generalization of the spectral

norm to higher order tensors is straightforward, e.g. the induced norm of the dimβ × dimβ × dimβ

tensor of third partial derivatives of L(β, φ) wrt β is given by

‖∂βββL(β, φ)‖ = max
{u,v∈Rdim β , ‖u‖=1, ‖v‖=1}

∥∥∥∥∥∥

dimβ∑

k,l=1

uk vl ∂ββkβl
L(β, φ)

∥∥∥∥∥∥
.

This choice of norm is immaterial for the asymptotic analysis because dimβ is fixed with the sample

size.

In contrast, it is important what norms we choose for vectors of dimension dimφ, and their corre-

sponding matrices and tensors, because dimφ is increasing with the sample size. For vectors of dimension

dimφ, we use the ℓq-norm

‖φ‖q =
(

dimφ∑

g=1

|φg|q
)1/q

,

where 2 ≤ q ≤ ∞.13 The particular value q = 8 will be chosen later.14 We use the norms that are

induced by the ℓq-norm for the corresponding matrices and tensors, e.g. the induced q-norm of the

13We use the letter q instead of p to avoid confusion with the use of p for probability.
14The main reason not to choose q = ∞ is the assumption ‖H̃‖q = oP (1) below, which is used to guarantee that ‖H−1‖q is

of the same order as ‖H
−1

‖q . If we assume ‖H−1‖q = OP (1) directly instead of ‖H
−1

‖q = OP (1), then we can set q = ∞.
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dimφ× dim φ× dimφ tensor of third partial derivatives of L(β, φ) wrt φ is

‖∂φφφL(β, φ)‖q = max
{u,v∈Rdim φ, ‖u‖q=1, ‖v‖q=1}

∥∥∥∥∥∥

dimφ∑

g,h=1

ug vh ∂φφgφh
L(β, φ)

∥∥∥∥∥∥
q

. (A.1)

Note that in general the ordering of the indices of the tensor would matter in the definition of this norm,

with the first index having a special role. However, since partial derivatives like ∂φgφhφl
L(β, φ) are fully

symmetric in the indices g, h, l, the ordering is not important in their case.

For mixed partial derivatives of L(β, φ) wrt β and φ, we use the norm that is induced by the Euclidian

norm on dimβ-vectors and the q-norm on dim φ-indices, e.g.

‖∂ββφφφL(β, φ)‖q = max
{u,v∈Rdim β , ‖u‖=1, ‖v‖=1}

max
{w,x∈Rdimφ, ‖w‖q=1, ‖x‖q=1}∥∥∥∥∥∥

dimβ∑

k,l=1

dimφ∑

g,h=1

uk vl wg xh ∂βkβlφφgφh
L(β, φ)

∥∥∥∥∥∥
q

, (A.2)

where we continue to use the notation ‖.‖q, even though this is a mixed norm.

Note that for w, x ∈ Rdimφ and q ≥ 2,

|w′x| ≤ ‖w‖q‖x‖q/(q−1) ≤ (dimφ)(q−2)/q‖w‖q‖x‖q.

Thus, whenever we bound a scalar product of vectors, matrices and tensors in terms of the above norms

we have to account for this additional factor (dimφ)(q−2)/q . For example,

∣∣∣∣∣∣

dimβ∑

k,l=1

dimφ∑

f,g,h=1

uk vl wf xh yf ∂βkβlφfφgφh
L(β, φ)

∣∣∣∣∣∣
≤ (dimφ)(q−2)/q‖u‖ ‖v‖ ‖w‖q ‖x‖q ‖y‖q ‖∂ββφφφL(β, φ)‖q .

For higher-order tensors, we use the notation ∂φφφL(β, φ) inside the q-norm ‖.‖q defined above, while

we rely on standard index and matrix notation for all other expressions involving those partial deriva-

tives, e.g. ∂φφ′φgL(β, φ) is a dimφ × dimφ matrix for every g = 1, . . . , dimφ. Occasionally, e.g. in

Assumption B.1(vi) below, we use the Euclidian norm for dimφ-vectors, and the spectral norm for

dimφ × dim φ-matrices, denoted by ‖.‖, and defined as ‖.‖q with q = 2. Moreover, we employ the

matrix infinity norm ‖A‖∞ = maxi
∑

j |Aij |, and the matrix maximum norm ‖A‖max = maxij |Aij |
to characterize the properties of the inverse of the expected Hessian of the incidental parameters in

Section D.4.

For r ≥ 0, we define the sets B(r, β0) =
{
β : ‖β − β0‖ ≤ r

}
, and Bq(r, φ

0) =
{
φ : ‖φ− φ0‖q ≤ r

}
,

which are closed balls of radius r around the true parameter values β0 and φ0, respectively.

B Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile objective function, L(β, φ̂(β)),
and for the fixed effects estimators of the parameters and APEs, β̂ and δ̂. We do not employ the panel

structure of the model, nor the particular form of the objective function given in Section 4. Instead, we

consider the estimation of an unspecified model based on a sample of size NT and a generic objective
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function L(β, φ), which depends on the parameter of interest β and the incidental parameter φ. The

estimators φ̂(β) and β̂ are defined in (2.7) and (2.8).

We make the following high-level assumptions. These assumptions might appear somewhat abstract,

but will be justified by more primitive conditions in the context of panel models.

Assumption B.1 (Regularity conditions for asymptotic expansion of β̂). Let q > 4 and 0 ≤ ǫ <

1/8 − 1/(2q). Let rβ = rβ,NT > 0, rφ = rφ,NT > 0, with rβ = o
[
(NT )−1/(2q)−ǫ

]
and rφ = o [(NT )−ǫ].

We assume that

(i) dimφ√
NT

→ a, 0 < a <∞.

(ii) (β, φ) 7→ L(β, φ) is four times continuously differentiable in B(rβ, β0)× Bq(rφ, φ
0), wpa1.

(iii) sup
β∈B(rβ ,β0)

∥∥∥φ̂(β)− φ0
∥∥∥
q
= oP (rφ).

(iv) H > 0, and
∥∥∥H−1

∥∥∥
q
= OP (1).

(v) For the q-norm defined in Appendix A,

‖S‖q = OP

(
(NT )−1/4+1/(2q)

)
, ‖∂βL‖ = OP (1), ‖H̃‖q = oP (1),

‖∂βφ′L‖q = OP

(
(NT )1/(2q)

)
, ‖∂ββ′L‖ = OP (

√
NT ), ‖∂βφφL‖q = OP ((NT )

ǫ),

‖∂φφφL‖q = OP ((NT )ǫ) ,

and

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βββL(β, φ)‖ = OP

(√
NT

)
,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφL(β, φ)‖q = OP

(
(NT )1/(2q)

)
,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφφL(β, φ)‖q = OP ((NT )ǫ) ,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφφL(β, φ)‖q = OP ((NT )ǫ) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφφL(β, φ)‖q = OP ((NT )ǫ) .

(vi) For the spectral norm ‖.‖ = ‖.‖2,

‖H̃‖ = oP

(
(NT )−1/8

)
,
∥∥∥∂ββ′L̃

∥∥∥ = oP (
√
NT ),

∥∥∥∂βφφL̃
∥∥∥ = oP

(
(NT )−1/8

)
,

∥∥∥∂βφ′L̃
∥∥∥ = OP (1) ,

∥∥∥∥∥∥

dimφ∑

g,h=1

∂φφgφh
L̃ [H−1S]g [H

−1S]h

∥∥∥∥∥∥
= oP

(
(NT )−1/4

)
.

Let ∂βL(β, φ̂(β)) be the score of the profile objective function.15 The following theorem is the main

result of this appendix.

15Note that d
dβ

L(β, φ̂(β)) = ∂βL(β, φ̂(β)) by the envelope theorem.
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Theorem B.1 (Asymptotic expansions of φ̂(β) and ∂βL(β, φ̂(β))). Let Assumption B.1 hold. Then

φ̂(β)− φ0 = H−1S +H−1[∂φβ′L](β − β0) + 1
2H−1

dimφ∑

g=1

[∂φφ′φgL]H−1S[H−1S]g +Rφ(β),

and

∂βL(β, φ̂(β)) = U −W
√
NT (β − β0) +R(β),

where U = U (0) + U (1), and

W = − 1√
NT

(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)
,

U (0) = ∂βL+ [∂βφ′L]H−1S,

U (1) = [∂βφ′L̃]H−1S − [∂βφ′L]H−1 H̃H−1 S +
1

2

dimφ∑

g=1

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)
[H−1S]gH

−1S.

The remainder terms of the expansions satisfy

sup
β∈B(rβ,β0)

(NT )1/2−1/(2q)
∥∥Rφ(β)

∥∥
q

1 +
√
NT‖β − β0‖

= oP (1) , sup
β∈B(rβ,β0)

‖R(β)‖
1 +

√
NT‖β − β0‖

= oP (1) .

Remark 6. The result for φ̂(β)−φ0 does not rely on Assumption B.1(vi). Without this assumption we

can also show that

∂βL(β, φ̂(β)) = ∂βL+
[
∂ββ′L+ (∂βφ′L)H−1(∂φ′βL)

]
(β − β0) + (∂βφ′L)H−1S

+
1

2

∑

g

(
∂βφ′φgL+ [∂βφ′L]H−1[∂φφ′φgL]

)
[H−1S]gH−1S +R1(β),

with R1(β) satisfying the same bound as R(β). Thus, the spectral norm bounds in Assumption B.1(vi)

for dimφ-vectors, matrices and tensors are only used after separating expectations from deviations of

expectations for certain partial derivatives. Otherwise, the derivation of the bounds is purely based on

the q-norm for dimφ-vectors, matrices and tensors.

The proofs are given in Section B.1. Theorem B.1 characterizes asymptotic expansions for the

incidental parameter estimator and the score of the profile objective function in the incidental parameter

score S up to quadratic order. The theorem provides bounds on the the remainder terms Rφ(β) and

R(β), which make the expansions applicable to estimators of β that take values within a shrinking rβ-

neighborhood of β0 wpa1. Given such an rβ-consistent estimator β̂ that solves the first order condition

∂βL(β, φ̂(β)) = 0, we can use the expansion of the profile objective score to obtain an asymptotic

expansion for β̂. This gives rise to the following corollary of Theorem B.1 . Let W∞ := limN,T→∞W .

Corollary B.2 (Asymptotic expansion of β̂). Let Assumption B.1 be satisfied. In addition, let U =

OP (1), let W∞ exist with W∞ > 0, and let ‖β̂ − β0‖ = oP (rβ). Then

√
NT (β̂ − β0) =W

−1

∞ U + oP (1).
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The following theorem states that for strictly concave objective functions no separate consistency

proof is required for φ̂(β) and for β̂.

Theorem B.3 (Consistency under Concavity). Let Assumption B.1(i), (ii), (iv), (v) and (vi) hold,

and let (β, φ) 7→ L(β, φ) be strictly concave over (β, φ) ∈ Rdimβ+dimφ, wpa1. Assume furthermore that

(NT )−1/4+1/(2q) = oP (rφ) and (NT )1/(2q)rβ = oP (rφ). Then,

sup
β∈B(rβ,β0)

∥∥∥φ̂(β)− φ0
∥∥∥
q
= oP (rφ),

i.e. Assumption B.1(iii) is satisfied. If, in addition, W∞ exists with W∞ > 0, then ‖β̂ − β0‖ =

OP

(
(NT )−1/4

)
.

In the application of Theorem B.1 to panel models, we focus on estimators with strictly concave

objective functions. By Theorem B.3, we only need to check Assumption B.1(i), (ii), (iv), (v) and (vi),

as well as U = OP (1) and W∞ > 0, when we apply Corollary B.2 to derive the limiting distribution of

β̂. We give the proofs of Corollary B.2 and Theorem B.3 in Section B.1.

Expansion for Average Effects

We invoke the following high-level assumption, which is verified under more primitive conditions for

panel data models in the next section.

Assumption B.2 (Regularity conditions for asymptotic expansion of δ̂). Let q, ǫ, rβ and rφ be defined

as in Assumption B.1. We assume that

(i) (β, φ) 7→ ∆(β, φ) is three times continuously differentiable in B(rβ , β0)× Bq(rφ, φ
0), wpa1.

(ii) ‖∂β∆‖ = OP (1), ‖∂φ∆‖q = OP

(
(NT )1/(2q)−1/2

)
, ‖∂φφ∆‖q = OP ((NT )

ǫ−1/2), and

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββ∆(β, φ)‖ = OP (1) ,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφ′∆(β, φ)‖q = OP

(
(NT )1/(2q)−1/2

)
,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφ∆(β, φ)‖q = OP

(
(NT )ǫ−1/2

)
.

(iii)
∥∥∥∂β∆̃

∥∥∥ = oP (1),
∥∥∥∂φ∆̃

∥∥∥ = OP

(
(NT )−1/2

)
, and

∥∥∥∂φφ∆̃
∥∥∥ = oP

(
(NT )−5/8

)
.

The following result gives the asymptotic expansion for the estimator, δ̂ = ∆(β, φ̂(β)), wrt δ =

∆(β0, φ0).

Theorem B.4 (Asymptotic expansion of δ̂). Let Assumptions B.1 and B.2 hold and let ‖β̂ − β0‖ =

OP

(
(NT )−1/2

)
= oP (rβ). Then

δ̂ − δ =
[
∂β′∆+ (∂φ′∆)H−1

(∂φβ′L)
]
(β̂ − β0) + U

(0)
∆ + U

(1)
∆ + oP

(
1/

√
NT

)
,
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where

U
(0)
∆ = (∂φ′∆)H−1S,

U
(1)
∆ = (∂φ′∆̃)H−1S − (∂φ′∆)H−1H̃H−1S

+ 1
2 S ′H−1

[
∂φφ′∆+

dimφ∑

g=1

[
∂φφ′φgL

] [
H−1

(∂φ∆)
]
g

]
H−1S.

Remark 7. The expansion of the profile score ∂βk
L(β, φ̂(β)) in Theorem B.1 is a special case of the

expansion in Theorem B.4, for ∆(β, φ) = 1√
NT

∂βk
L(β, φ). Assumptions B.2 also exactly match with the

corresponding subset of Assumption B.1.

B.1 Proofs for Appendix B (Asymptotic Expansions)

The following Lemma contains some statements that are not explicitly assumed in Assumptions B.1,

but that are implied by it.

Lemma B.5. Let Assumptions B.1 be satisfied. Then

(i) H(β, φ) > 0 for all β ∈ B(rβ, β0) and φ ∈ Bq(rφ, φ
0) wpa1,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββ′L(β, φ)‖ = OP

(√
NT

)
,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφ′L(β, φ)‖q = OP

(
(NT )1/(2q)

)
,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφL(β, φ)‖q = OP ((NT )ǫ) ,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφL(β, φ)‖q = OP ((NT )
ǫ),

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

∥∥H−1(β, φ)
∥∥
q
= OP (1).

(ii) Moreover, ‖S‖ = OP (1) ,
∥∥H−1

∥∥ = OP (1) ,
∥∥∥H−1

∥∥∥ = OP (1) ,
∥∥∥H−1 −H−1

∥∥∥ = oP
(
(NT )−1/8

)
,∥∥∥H−1 −

(
H−1 −H−1H̃H−1

)∥∥∥ = oP
(
(NT )−1/4

)
, ‖∂βφ′L‖ = OP

(
(NT )1/4

)
, ‖∂βφφL‖ = OP ((NT )ǫ) ,∥∥∥

∑
g ∂φφ′φgL [H−1S]g

∥∥∥ = OP

(
(NT )−1/4+1/(2q)+ǫ

)
, and

∥∥∥
∑

g ∂φφ′φgL [H−1S]g
∥∥∥ = OP

(
(NT )−1/4+1/(2q)+ǫ

)
.

Proof of Lemma B.5. # Part (i): Let v ∈ R

dimβ and w, u ∈ R

dimφ. By a Taylor expansion of

∂βφ′φgL(β, φ) around (β0, φ0)
∑

g

ugv
′ [∂βφ′φgL(β, φ)

]
w

=
∑

g

ugv
′
[
∂βφ′φgL+

∑

k

(βk − β0
k)∂βkβφ′φgL(β̃, φ̃)−

∑

h

(φh − φ0h)∂βφ′φgφh
L(β̃, φ̃)

]
w,

with (β̃, φ̃) between (β0, φ0) and (β, φ). Thus

‖∂βφφL(β, φ)‖q = sup
‖v‖=1

sup
‖u‖q=1

sup
‖w‖q/(q−1)=1

∑

g

ugv
′ [∂βφ′φgL(β, φ)

]
w

≤ ‖∂βφφL‖q + ‖β − β0‖ sup
(β̃,φ̃)

∥∥∥∂ββφφL(β̃, φ̃)
∥∥∥
q
+ ‖φ− φ0‖q sup

(β̃,φ̃)

∥∥∥∂βφφφL(β̃, φ̃)
∥∥∥
q
,
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where the supremum over (β̃, φ̃) is necessary, because those parameters depend on v, w, u. By Assump-

tion B.1, for large enough N and T,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφL(β, φ)‖q ≤ ‖∂βφφL‖+ rβ sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφφL(β, φ)‖q

+ rφ sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφφL(β, φ)‖q

= OP [(NT )ǫ + rβ(NT )
ǫ + rφ(NT )

ǫ] = OP ((NT )ǫ) .

The proofs for the bounds on ‖∂ββ′L(β, φ)‖, ‖∂βφ′L(β, φ)‖q and ‖∂φφφL(β, φ)‖q are analogous.

Next, we show that H(β, φ) is non-singular for all β ∈ B(rβ, β0) and φ ∈ Bq(rφ, φ
0) wpa1. By a

Taylor expansion and Assumption B.1, for large enough N and T,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖H(β, φ) −H‖q ≤ rβ sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφL(β, φ)‖q

+ rφ sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφL(β, φ)‖q = oP (1). (B.1)

Define ∆H(β, φ) = H−H(β, φ). Then ‖∆H(β, φ)‖q ≤ ‖H(β, φ) −H‖q +
∥∥∥H̃
∥∥∥
q
, and therefore

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∆H(β, φ)‖q = oP (1),

by Assumption B.1 and equation (B.1).

For any square matrix with ‖A‖q < 1,
∥∥(1−A)−1

∥∥
q
≤ (1− ‖A‖q)−1

, see e.g. p.301 in Horn and

Johnson (1985). Then

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

∥∥H−1(β, φ)
∥∥
q

= sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

∥∥∥
(
H−∆H(β, φ)

)−1
∥∥∥
q

= sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

∥∥∥∥H
−1
(
1−∆H(β, φ)H−1

)−1
∥∥∥∥
q

≤
∥∥∥H−1

∥∥∥
q

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

∥∥∥∥
(
1−∆H(β, φ)H−1

)−1
∥∥∥∥
q

≤
∥∥∥H−1

∥∥∥
q

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

(
1−

∥∥∥∆H(β, φ)H−1
∥∥∥
q

)−1

≤
∥∥∥H−1

∥∥∥
q
(1− oP (1))

−1 = OP (1).

#Part (ii): By the properties of the ℓq-norm and Assumption B.1(v),

‖S‖ = ‖S‖2 ≤ (dimφ)1/2−1/q‖S‖q = Op(1).

Analogously,

‖∂βφ′L‖ ≤ (dimφ)1/2−1/q ‖∂βφ′L‖q = OP

(
(NT )1/4

)
.

By Lemma D.4, ‖H−1‖q/(q−1) = ‖H−1‖q because H−1
is symmetric, and

∥∥∥H−1
∥∥∥ =

∥∥∥H−1
∥∥∥
2
≤
√
‖H−1‖q/(q−1)‖H

−1‖q = ‖H−1‖q = OP (1). (B.2)
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Analogously,

‖∂βφφL‖ ≤ ‖∂βφφL‖q = OP ((NT )ǫ) ,
∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥ ≤

∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥
q

≤ ‖∂φφφL‖q
∥∥H−1

∥∥
q
‖S‖q = OP

(
(NT )−1/4+1/(2q)+ǫ

)
,

∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥ ≤

∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥
q

≤ ‖∂φφφL‖q
∥∥∥H−1

∥∥∥
q
‖S‖q = OP

(
(NT )−1/4+1/(2q)+ǫ

)
.

Assumption B.1 guarantees that
∥∥∥H−1

∥∥∥
∥∥∥H̃
∥∥∥ < 1 wpa1. Therefore,

H−1 = H−1
(
1+ H̃H−1

)−1

= H−1
∞∑

s=0

(−H̃H−1
)s = H−1 −H−1H̃H−1

+H−1
∞∑

s=2

(−H̃H−1
)s.

Note that
∥∥∥H−1∑∞

s=2(−H̃H−1
)s
∥∥∥ ≤

∥∥∥H−1
∥∥∥
∑∞

s=2

(∥∥∥H−1
∥∥∥
∥∥∥H̃
∥∥∥
)s

, and therefore

∥∥∥H−1 −
(
H−1 −H−1H̃H−1

)∥∥∥ ≤

∥∥∥H−1
∥∥∥
3 ∥∥∥H̃

∥∥∥
2

1−
∥∥∥H−1

∥∥∥
∥∥∥H̃
∥∥∥
= oP

(
(NT )−1/4

)
,

by Assumption B.1(vi) and equation (B.2).

The results for
∥∥H−1

∥∥ and
∥∥∥H−1 −H−1

∥∥∥ follow immediately. �

B.1.1 Legendre Transformed Objective Function

We consider the shrinking neighborhood B(rβ, β0) × Bq(rφ, φ
0) of the true parameters (β0, φ0). State-

ment (i) of Lemma B.5 implies that the objective function L(β, φ) is strictly concave in φ in this

shrinking neighborhood wpa1. We define

L∗(β, S) = max
φ∈Bq(rφ,φ0)

[L(β, φ)− φ′S] , Φ(β, S) = argmax
φ∈Bq(rφ,φ0)

[L(β, φ)− φ′S] , (B.3)

where β ∈ B(rβ , β0) and S ∈ R

dimφ. The function L∗(β, S) is the Legendre transformation of the

objective function L(β, φ) in the incidental parameter φ. We denote the parameter S as the dual

parameter to φ, and L∗(β, S) as the dual function to L(β, φ). We only consider L∗(β, S) and Φ(β, S)

for parameters β ∈ B(rβ , β0) and S ∈ S(β,Bq(rφ, φ
0)), where the optimal φ is defined by the first order

conditions, i.e. is not a boundary solution. We define the corresponding set of pairs (β,S) that is dual
to B(rβ, β0)× Bq(rφ, φ

0) by

SBr(β
0, φ0) =

{
(β,S) ∈ Rdimβ+dimφ : (β,Φ(β, S)) ∈ B(rβ, β0)× Bq(rφ, φ

0)
}
.

Assumption B.1 guarantees that for β ∈ B(rβ , β0) the domain S(β,Bq(rφ, φ
0)) includes S = 0, the origin

of Rdimφ, as an interior point, wpa1, and that L∗(β, S) is four times differentiable in a neighborhood
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of S = 0 (see Lemma B.6 below). The optimal φ = Φ(β, S) in equation (B.3) satisfies the first order

condition S = S(β, φ). Thus, for given β, the functions Φ(β, S) and S(β, φ) are inverse to each other,

and the relationship between φ and its dual S is one-to-one. This is a consequence of strict concavity of

L(β, φ) in the neighborhood of the true parameter value that we consider here.16 One can show that

Φ(β, S) = − ∂L∗(β, S)

∂S
,

which shows the dual nature of the functions L(β, φ) and L∗(β, S). For S = 0 the optimization in (B.3)

is just over the objective function L(β, φ), so that Φ(β, 0) = φ̂(β) and L∗(β, 0) = L(β, φ̂(β)), the profile

objective function. We already introduced S = S(β0, φ0), i.e. at β = β0 the dual of φ0 is S, and vica

versa. We can write the profile objective function L(β, φ̂(β)) = L∗(β, 0) as a Taylor series expansion of

L∗(β, S) around (β, S) = (β0,S), namely

L(β, φ̂(β)) = L∗(β0,S) + (∂β′L∗)∆β −∆β′(∂βS′L∗)S +
1

2
∆β′(∂ββ′L∗)∆β + . . . ,

where ∆β = β − β0, and here and in the following we omit the arguments of L∗(β, S) and of its partial

derivatives when they are evaluated at (β0,S). Analogously, we can obtain Taylor expansions for the

profile score ∂βL(β, φ̂(β)) = ∂βL∗(β, 0) and the estimated nuisance parameter φ̂(β) = −∂SL∗(β, 0) in

∆β and S, see the proof of Theorem B.1 below. Apart from combinatorial factors those expansions

feature the same coefficients as the expansion of L(β, φ̂(β)) itself. They are standard Taylor expansions

that can be truncated at a certain order, and the remainder term can be bounded by applying the mean

value theorem.

The functions L(β, φ) and its dual L∗(β, S) are closely related. In particular, for given β their first

derivatives with respect to the second argument S(β, φ) and Φ(β, S) are inverse functions of each other.

We can therefore express partial derivatives of L∗(β, S) in terms of partial derivatives of L(β, φ). This
is done in Lemma B.6. The norms ‖∂βSSSL∗(β, S)‖q, ‖∂SSSSL∗(β, S)‖q, etc., are defined as in equation

(A.1) and (A.2).

Lemma B.6. Let assumption B.1 be satisfied.

(i) The function L∗(β, S) is well-defined and is four times continuously differentiable in SBr(β
0, φ0),

wpa1.

16Another consequence of strict concavity of L(β, φ) is that the dual function L∗(β, S) is strictly convex in S. The original

L(β, φ) can be recovered from L∗(β, S) by again performing a Legendre transformation, namely

L(β, φ) = min
S∈Rdimφ

[
L∗(β, S) + φ′S

]
.

38



(ii) For L∗ = L∗(β0,S),

∂SL∗ = −φ0, ∂βL∗ = ∂βL, ∂SS′L∗ = −(∂φφ′L)−1 = H−1, ∂βS′L∗ = −(∂βφ′L)H−1,

∂ββ′L∗ = ∂ββ′L+ (∂βφ′L)H−1(∂φ′βL), ∂SS′SgL∗ = −
∑

h

H−1(∂φφ′φh
L)H−1(H−1)gh,

∂βkSS′L∗ = H−1(∂βkφ′φL)H−1 +
∑

g

H−1(∂φgφ′φL)H−1[H−1∂βkφL]g,

∂βkβlS′L∗ = −(∂βkβlφ′L)H−1 − (∂βlφ′L)H−1(∂βkφφ′L)H−1 − (∂βkφ′L)H−1(∂βlφ′φL)H−1

−
∑

g

(∂βkφ′L)H−1(∂φgφ′φL)H−1[H−1∂βlφL]g,

∂βkβlβmL∗ = ∂βkβlβmL+
∑

g

(∂βkφ′L)H−1(∂φgφ′φL)H−1(∂βlφL)[H−1∂φβmL]g

+ (∂βkφ′L)H−1(∂βlφ′φL)H−1∂φβmL+ (∂βmφ′L)H−1(∂βkφ′φL)H−1∂φβl
L

+ (∂βlφ′L)H−1(∂βmφ′φL)H−1∂φβk
L

+ (∂βkβlφ′L)H−1(∂φ′βmL) + (∂βkβmφ′L)H−1(∂φ′βl
L) + (∂βlβmφ′L)H−1(∂φ′βk

L),

and

∂SS′SgSh
L∗ =

∑

f,e

H−1(∂φφ′φfφeL)H−1(H−1)gf (H−1)he

+ 3
∑

f,e

H−1(∂φφ′φeL)H−1(∂φφ′φf
L)H−1(H−1)gf (H−1)he,

∂βkSS′SgL∗ = −
∑

h

H−1(∂βkφ′φL)H−1(∂φφ′φh
L)H−1[H−1]gh

−
∑

h

H−1(∂φφ′φh
L)H−1(∂βkφ′φL)H−1[H−1]gh

−
∑

h

H−1(∂φφ′φh
L)H−1[H−1(∂βkφ′φL)H−1]gh

−
∑

h,f

H−1(∂φfφ′φL)H−1(∂φφ′φh
L)H−1[H−1]gh[H−1∂βkφL]f

−
∑

h,f

H−1(∂φφ′φh
L)H−1(∂φfφ′φL)H−1[H−1]gh[H−1∂βkφL]f

−
∑

h,f

H−1(∂φφ′φh
L)H−1[H−1(∂φfφ′φL)H−1]gh[H−1∂βkφL]f

−
∑

h

H−1(∂βkφφ′φh
L)H−1[H−1]gh

−
∑

h,f

H−1(∂φφ′φhφf
L)H−1[H−1]gh[H−1(∂βkφL)]f .
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(iii) Moreover,

sup
(β,S)∈SBr(β0,φ0)

‖∂βββL∗(β, S)‖ = OP

(
(NT )1/2+1/(2q)+ǫ

)
,

sup
(β,S)∈SBr(β0,φ0)

‖∂ββSL∗(β, S)‖q = OP

(
(NT )1/q+ǫ

)
,

sup
(β,S)∈SBr(β0,φ0)

‖∂βSSL∗(β, S)‖q = OP

(
(NT )1/(2q)+ǫ

)
,

sup
(β,S)∈SBr(β0,φ0)

‖∂βSSSL∗(β, S)‖q = OP

(
(NT )1/(2q)+2ǫ

)
,

sup
(β,S)∈SBr(β0,φ0)

‖∂SSSSL∗(β, S)‖q = OP

(
(NT )2ǫ

)
.

Proof of Lemma B.6. #Part (i): According to the definition (B.3), L∗(β, S) = L(β,Φ(β, S)) −
Φ(β, S)′S, where Φ(β, S) solves the FOC, S(β,Φ(β, S)) = S, i.e. S(β, .) and Φ(β, .) are inverse functions

for every β. Taking the derivative of S(β,Φ(β, S)) = S wrt to both S and β yields

[∂SΦ(β, S)
′][∂φS(β,Φ(β, S))′] = 1,

[∂βS(β,Φ(β, S))′] + [∂βΦ(β, S)
′][∂φS(β,Φ(β, S))′] = 0. (B.4)

By definition, S = S(β0, φ0). Therefore, Φ(β, S) is the unique function that satisfies the boundary

condition Φ(β0,S) = φ0 and the system of partial differential equations (PDE) in (B.4). Those PDE’s

can equivalently be written as

∂SΦ(β, S)
′ = −[H(β,Φ(β, S))]−1,

∂βΦ(β, S)
′ = [∂βφ′L(β,Φ(β, S))][H(β,Φ(β, S))]−1 . (B.5)

This shows that Φ(β, S) (and thus L∗(β, S)) are well-defined in any neighborhood of (β, S) = (β0,S) in
which H(β,Φ(β, S)) is invertible (inverse function theorem). Lemma B.5 shows that H(β, φ) is invertible

in B(rβ , β0)×Bq(rφ, φ
0), wpa1. The inverse function theorem thus guarantee that Φ(β, S) and L∗(β, S)

are well-defined in SBr(β
0, φ0). The partial derivatives of L∗(β, S) of up to fourth order can be expressed

as continuous transformations of the partial derivatives of L(β, φ) up to fourth order (see e.g. proof of

part (ii) of the lemma). Hence, L∗(β, S) is four times continuously differentiable because L(β, φ) is four
times continuously differentiable.

#Part (ii): Differentiating L∗(β, S) = L(β,Φ(β, S))−Φ(β, S)′S wrt β and S and using the FOC of the

maximization over φ in the definition of L∗(β, S) gives ∂βL∗(β, S) = ∂βL(β,Φ(β, S)) and ∂SL∗(β, S) =

−Φ(β, S), respectively. Evaluating this expression at (β, S) = (β0,S) gives the first two statements of

part (ii).

Using ∂SL∗(β, S) = −Φ(β, S), the PDE (B.5) can be written as

∂SS′L∗(β, S) = H−1(β,Φ(β, S)),

∂βS′L∗(β, S) = −[∂βφ′L(β,Φ(β, S))]H−1(β,Φ(β, S)).

Evaluating this expression at (β, S) = (β0,S) gives the next two statements of part (ii).
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Taking the derivative of ∂βL∗(β, S) = ∂βL(β,Φ(β, S)) wrt to β and using the second equation of

(B.5) gives the next statement when evaluated at (β, S) = (β0,S).
Taking the derivative of ∂SS′L∗(β, S) = −[∂φφ′L(β,Φ(β, S))]−1 wrt to Sg and using the first equation

of (B.5) gives the next statement when evaluated at (β, S) = (β0,S).
Taking the derivative of ∂SS′L∗(β, S) = −[∂φφ′L(β,Φ(β, S))]−1 wrt to βk and using the second

equation of (B.5) gives

∂βkSS′L∗(β, S) = H−1(β, φ)[∂βkφ′φL(β, φ)]H−1(β, φ)

+
∑

g

H−1(β, φ)[∂φgφ′φL(β, φ)]H−1(β, φ){H−1(β, φ)[∂βkφL(β, φ)]}g, (B.6)

where φ = Φ(β, S). This becomes the next statement when evaluated at (β, S) = (β0,S).
We omit the proofs for ∂βkβlS′L∗, ∂βkβlSL∗, ∂SS′SgSh

L∗ and ∂βkSS′SgL∗ because they are analogous.

#Part (iii): We only show the result for ‖∂βSSL∗(β, S)‖q, the proof of the other statements is analogous.

By equation (B.6)

‖∂βSSL∗(β, S)‖q ≤
∥∥H−1(β, φ)

∥∥2
q
‖∂βφφL(β, φ)‖q +

∥∥H−1(β, φ)
∥∥3
q
‖∂φφφL(β, φ)‖q ‖∂βφ′L(β, φ)‖q ,

where φ = Φ(β, S). Then, by Lemma B.5

sup
(β,S)∈SBr(β0,φ0)

‖∂βSSL∗(β, S)‖q ≤ sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

[ ∥∥H−1(β, φ)
∥∥2
q
‖∂βφφL(β, φ)‖q

+
∥∥H−1(β, φ)

∥∥3
q
‖∂φφφL(β, φ)‖q ‖∂βφ′L(β, φ)‖q

]
= O

(
(NT )1/(2q)+ǫ

)
.

To derive the rest of the bounds we can use that the expressions from part (ii) hold not only for

(β0,S), but also for other values (β, S), provided that (β,Φ(β, S) is used as the argument on the rhs

expressions. �

B.1.2 Proofs of Theorem B.1, Corollary B.2, and Theorem B.3

Proof of Theorem B.1, Part 1: Expansion of φ̂(β). Let β = βNT ∈ B(β0, rβ). A Taylor expan-

sion of ∂SL∗(β, 0) around (β0,S) gives

φ̂(β) = −∂SL∗(β, 0) = −∂SL∗ − (∂Sβ′L∗)∆β + (∂SS′L∗)S − 1

2

∑

g

(∂SS′SgL∗)SSg +Rφ(β),

where we first expand in β holding S = S fixed, and then expand in S. For any v ∈ Rdimφ the remainder

term satisfies

v′Rφ(β) = v′
{
− 1

2

∑

k

[∂Sβ′βk
L∗(β̃,S)](∆β)(∆βk) +

∑

k

[∂SS′βk
L∗(β0, S̃)]S(∆βk)

+
1

6

∑

g,h

[∂SS′SgSh
L∗(β0, S̄)]SSgSh

}
,

where β̃ is between β0 and β, and S̃ and S̄ are between 0 and S. By part (ii) of Lemma B.6,

φ̂(β)− φ0 = H−1(∂φβ′L)∆β +H−1S + 1
2H−1

∑

g

(∂φφ′φgL)H−1S(H−1S)g +Rφ(β).
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Using that the vector norm ‖.‖q/(q−1) is the dual to the vector norm ‖.‖q, Assumption B.1, and Lem-

mas B.5 and B.6 yields

∥∥Rφ(β)
∥∥
q
= sup

‖v‖q/(q−1)=1

v′Rφ(β)

≤ 1

2

∥∥∥∂SββL∗(β̃,S)
∥∥∥
q
‖∆β‖2 +

∥∥∥∂SSβL∗(β0, S̃)
∥∥∥
q
‖S‖q‖∆β‖+

1

6

∥∥∂SSSSL∗(β0, S̄)
∥∥
q
‖S‖3q

= OP

[
(NT )1/q+ǫrβ‖∆β‖+ (NT )−1/4+1/q+ǫ‖∆β‖+ (NT )−3/4+3/(2q)+2ǫ

]

= oP

(
(NT )−1/2+1/(2q)

)
+ oP

(
(NT )1/(2q)‖β − β0‖

)
,

uniformly over β ∈ B(β0, rβ) by Lemma B.6. �

Proof of Theorem B.1, Part 2: Expansion of profile score. Let β = βNT ∈ B(β0, rβ). A Taylor

expansion of ∂βL∗(β, 0) around (β0,S) gives

∂βL(β, φ̂(β)) = ∂βL∗(β, 0) = ∂βL∗ + (∂ββ′L∗)∆β − (∂βS′L∗)S +
1

2

∑

g

(∂βS′SgL∗)SSg +R1(β),

where we first expand in β for fixed S = S, and then expand in S. For any v ∈ Rdimβ the remainder

term satisfies

v′R1(β) = v′
{
1

2

∑

k

[∂ββ′βk
L∗(β̃,S)](∆β)(∆βk)−

∑

k

[∂ββkS′L∗(β0, S̃)]S(∆βk)

− 1

6

∑

g,h

[∂βS′SgSh
L∗(β0, S̄)]SSgSh

}
,

where β̃ is between β0 and β, and S̃ and S̄ are between 0 and S. By Lemma B.6,

∂βL(β, φ̂(β)) = ∂βL+
[
∂ββ′L+ (∂βφ′L)H−1(∂φ′βL)

]
(β − β0) + (∂βφ′L)H−1S

+
1

2

∑

g

(
∂βφ′φgL+ [∂βφ′L]H−1[∂φφ′φgL]

)
[H−1S]gH−1S +R1(β),

where for any v ∈ Rdimβ ,

‖R1(β)‖ = sup
‖v‖=1

v′R1(β)

≤ 1

2

∥∥∥∂βββL∗(β̃,S)
∥∥∥ ‖∆β‖2 + (NT )1/2−1/q

∥∥∥∂ββSL∗(β0, S̃)
∥∥∥
q
‖S‖q‖∆β‖

+
1

6
(NT )1/2−1/q

∥∥∂βSSSL∗(β0, S̄)
∥∥
q
‖S‖3q

= OP

[
(NT )1/2+1/(2q)+ǫrβ‖∆β‖+ (NT )1/4+1/(2q)+ǫ‖∆β‖+ (NT )−1/4+1/q+2ǫ

]

= oP (1) + oP (
√
NT‖β − β0‖),

uniformly over β ∈ B(β0, rβ) by Lemma B.6. We can also write

dβL(β, φ̂(β)) = ∂βL −
√
NT W (∆β) + (∂βφ′L)H−1S + (∂βφ′ L̃)H−1S − (∂βφ′L)H−1H̃H−1S

+
1

2

∑

g

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)
[H−1S]gH

−1S +R(β),

= U −
√
NT W (∆β) +R(β),
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where we decompose the term linear in S into multiple terms by using that

−(∂βS′L∗) = (∂βφ′L)H−1 =
[
(∂βφ′L) + (∂βφ′L̃)

] [
H−1 −H−1H̃H−1

+ . . .
]
.

The new remainder term is

R(β) = R1(β) + (∂ββ′ L̃)∆β +
[
(∂βφ′L)H−1(∂φ′βL)− (∂βφ′L)H−1

(∂φ′βL)
]
∆β

+ (∂βφ′L)
[
H−1 −

(
H−1 −H−1H̃H−1

)]
S − (∂βφ′L̃)H−1H̃H−1S

+
1

2

[∑

g

∂βφ′φgL[H−1S]gH−1S −
∑

g

∂βφ′φgL[H
−1S]gH−1S

]

+
1

2

[∑

g

[∂βφ′L]H−1[∂φφ′φgL][H−1S]gH−1S −
∑

g

[∂βφ′L]H−1
[∂φφ′φgL][H

−1S]gH
−1S

]
.

By Assumption B.1 and Lemma B.5,

‖R(β)‖ ≤ ‖R1(β)‖ +
∥∥∥∂ββ′L̃

∥∥∥ ‖∆β‖+ ‖∂βφ′L‖
∥∥∥H−1 −H−1

∥∥∥ ‖∂φ′βL‖ ‖∆β‖

+
∥∥∥∂βφ′ L̃

∥∥∥
∥∥∥H−1

∥∥∥
(
‖∂φ′βL‖+

∥∥∂φ′βL
∥∥) ‖∆β‖

+ ‖∂βφ′L‖
∥∥∥H−1 −

(
H−1 −H−1H̃H−1

)∥∥∥ ‖S‖+
∥∥∥H−1

∥∥∥
2 ∥∥∥∂βφ′ L̃

∥∥∥
∥∥∥H̃
∥∥∥ ‖S‖

+
1

2
‖∂βφφL‖

(∥∥H−1
∥∥+

∥∥∥H−1
∥∥∥
)∥∥∥H−1 −H−1

∥∥∥ ‖S‖2

+
1

2

∥∥∥H−1
∥∥∥
2 ∥∥∥∂βφφL̃

∥∥∥ ‖S‖2

+
1

2

∥∥∥∥
∑

g

[∂βφ′L]H−1[∂φφ′φgL][H−1S]gH−1S −
∑

g

[∂βφ′L]H−1
[∂φφ′φgL][H

−1S]gH
−1S

∥∥∥∥

= ‖R1(β)‖ + oP (1) + oP (
√
NT‖β − β0‖) +OP

[
(NT )−1/8+ǫ+1/(2q)

]

= oP (1) + oP (
√
NT‖β − β0‖),

uniformly over β ∈ B(β0, rβ). Here we use that

∥∥∥∥∥
∑

g

[∂βφ′L]H−1[∂φφ′φgL][H−1S]gH−1S −
∑

g

[∂βφ′L]H−1
[∂φφ′φgL][H

−1S]gH−1S
∥∥∥∥∥

≤ ‖∂βφ′L‖
∥∥∥H−1 −H−1

∥∥∥
(∥∥H−1

∥∥+
∥∥∥H−1

∥∥∥
)
‖S‖

∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥

+ ‖∂βφ′L‖
∥∥∥H−1 −H−1

∥∥∥
∥∥∥H−1

∥∥∥ ‖S‖
∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥

+
∥∥∥∂βφ′L̃

∥∥∥
∥∥∥H−1

∥∥∥
2

‖S‖
∥∥∥∥∥
∑

g

∂φφ′φgL [H−1S]g
∥∥∥∥∥

+
∥∥∂βφ′L

∥∥
∥∥∥H−1

∥∥∥

∥∥∥∥∥∥
∑

g,h

∂φφgφh
L̃ [H−1S]g[H

−1S]h

∥∥∥∥∥∥
.

�
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Proof of Corollary B.2. β̂ solves the FOC

∂βL(β̂, φ̂(β̂)) = 0.

By
∥∥∥β̂ − β0

∥∥∥ = oP (rβ) and Theorem B.1,

0 = ∂βL(β̂, φ̂(β̂)) = U −W
√
NT (β̂ − β0) + oP (1) + oP (

√
NT‖β̂ − β0‖).

Thus,
√
NT (β̂ − β0) = W

−1
U + oP (1) + oP (

√
NT‖β̂ − β0‖) = W

−1

∞ U + oP (1) + oP (
√
NT‖β̂ − β0‖),

where we use that W = W∞ + oP (1) is invertible wpa1 and that W
−1

= W
−1

∞ + oP (1). We conclude

that
√
NT (β̂ − β0) = OP (1) because U = OP (1), and therefore

√
NT (β̂ − β0) =W

−1

∞ U + oP (1). �

Proof of Theorem B.3. # Consistency of φ̂(β): Let η = ηNT > 0 be such that η = oP (rφ),

(NT )−1/4+1/(2q) = oP (η), and (NT )1/(2q)rβ = oP (η). For β ∈ B(rβ, β0), define

φ̂∗(β) := argmin
{φ: ‖φ−φ0‖q≤η}

‖S(β, φ)‖q . (B.7)

Then, ‖S(β, φ̂∗(β))‖q ≤ ‖S(β, φ0)‖q, and therefore by a Taylor expansion of S(β, φ0) around β = β0,

‖S(β, φ̂∗(β)) − S(β, φ0)‖q ≤ ‖S(β, φ̂∗(β))‖q + ‖S(β, φ0)‖q ≤ 2‖S(β, φ0)‖q
≤ 2‖S‖q + 2

∥∥∥∂φβ′L(β̃, φ0)
∥∥∥
q
‖β − β0‖

= OP

[
(NT )−1/4+1/(2q) + (NT )1/(2q)‖β − β0‖

]
,

uniformly over β ∈ B(rβ, β0), where β̃ is between β0 and β, and we use Assumption B.1(v) and

Lemma B.5. Thus,

sup
β∈B(rβ ,β0)

‖S(β, φ̂∗(β)) − S(β, φ0)‖q = OP

[
(NT )−1/4+1/(2q) + (NT )1/(2q)rβ

]
.

By a Taylor expansion of Φ(β, S) around S = S(β, φ0),
∥∥∥φ̂∗(β) − φ0

∥∥∥
q
=
∥∥∥Φ(β,S(β, φ̂∗(β))) − Φ(β,S(β, φ0))

∥∥∥
q
≤
∥∥∥∂SΦ(β, S̃)′

∥∥∥
q

∥∥∥S(β, φ̂∗(β)) − S(β, φ0)
∥∥∥
q

=
∥∥∥H−1(β,Φ(β, S̃))

∥∥∥
q

∥∥∥S(β, φ̂∗(β))− S(β, φ0)
∥∥∥
q
= OP (1)

∥∥∥S(β, φ̂∗(β)) − S(β, φ0)
∥∥∥
q
,

where S̃ is between S(β, φ̂∗(β)) and S(β, φ0) and we use Lemma B.5(i). Thus,

sup
β∈B(rβ ,β0)

∥∥∥φ̂∗(β) − φ0
∥∥∥
q
= OP

[
(NT )−1/4+1/(2q) + (NT )1/(2q)rβ

]
= oP (η).

This shows that φ̂∗(β) is an interior solution of the minimization problem (B.7), wpa1. Thus, S(β, φ̂∗(β)) =
0, because the objective function L(β, φ) is strictly concave and differentiable, and therefore φ̂∗(β) =

φ̂(β). We conclude that sup
β∈B(rβ,β0)

∥∥∥φ̂(β) − φ0
∥∥∥
q
= OP (η) = oP (rφ).

# Consistency of β̂: We have already shown that Assumption B.1(ii) is satisfied, in addition to the

remaining parts of Assumption B.1, which we assume. The bounds on the spectral norm in Assump-

tion B.1(vi) and in part (ii) of Lemma B.5 can be used to show that U = OP ((NT )
1/4).
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First, we consider the case dim(β) = 1 first. The extension to dim(β) > 1 is discussed below. Let

η = 2(NT )−1/2W
−1|U |. Our goal is to show that β̂ ∈ [β0 − η, β0 + η]. By Theorem B.1,

∂βL(β0 + η, φ̂(β0 + η)) = U −W
√
NTη + oP (1) + oP (

√
NTη) = oP (

√
NTη)−W

√
NTη,

∂βL(β0 − η, φ̂(β0 − η)) = U +W
√
NTη + oP (1) + oP (

√
NTη) = oP (

√
NTη) +W

√
NTη,

and therefore for sufficiently large N, T

∂βL(β0 + η, φ̂(β0 + η)) ≤ 0 ≤ ∂βL(β0 − η, φ̂(β0 − η)).

Thus, since ∂βL(β̂, φ̂(β̂)) = 0, for sufficiently large N, T ,

∂βL(β0 + η, φ̂(β0 + η)) ≤ ∂βL(β̂, φ̂(β̂)) ≤ ∂βL(β0 − η, φ̂(β0 − η)).

The profile objective L(β, φ̂(β)) is strictly concave in β because L(β, φ) is strictly concave in (β, φ).

Thus, ∂βL(β, φ̂(β)) is strictly decreasing. The previous set of inequalities implies that for sufficiently

large N, T

β0 + η ≥ β̂ ≥ β0 − η.

We conclude that ‖β̂ − β0‖ ≤ η = OP ((NT )
−1/4). This concludes the proof for dim(β) = 1.

To generalize the proof to dim(β) > 1 we define β± = β0 ± η β̂−β0

‖β̂−β0‖ . Let 〈β−, β+〉 = {rβ− + (1 −
r)β+ | r ∈ [0, 1]} be the line segment between β− and β+. By restricting attention to values β ∈ 〈β−, β+〉
we can repeat the above argument for the case dim(β) = 1 and thus show that β̂ ∈ 〈β−, β+〉, which
implies ‖β̂ − β0‖ ≤ η = OP ((NT )

−1/4). �

B.1.3 Proof of Theorem B.4

Proof of Theorem B.4. A Taylor expansion of ∆(β, φ) around (β0, φ0) yields

∆(β, φ) = ∆ + [∂β′∆](β − β0) + [∂φ′∆](φ − φ0) + 1
2 (φ − φ0)′[∂φφ′∆](φ − φ0) +R∆

1 (β, φ),

with remainder term

R∆
1 (β, φ) =

1
2 (β − β0)′[∂ββ′∆(β̄, φ)](β − β0) + (β − β0)′[∂βφ′∆(β0, φ̃)](φ− φ0)

+ 1
6

∑

g

(φ− φ0)′[∂φφ′φg∆(β0, φ̄)](φ − φ0)[φ − φ0]g,

where β̄ is between β and β0, and φ̃ and φ̄ are between φ and φ0.

By assumption, ‖β̂ − β0‖ = oP ((NT )
−1/4), and by the expansion of φ̂ = φ̂(β̂) in Theorem B.1,

‖φ̂− φ0‖q ≤
∥∥H−1

∥∥
q
‖S‖q +

∥∥H−1
∥∥
q
‖∂φβ′L‖q

∥∥∥β̂ − β0
∥∥∥
q
+ 1

2

∥∥H−1
∥∥3
q
‖∂φφφL‖q ‖S‖

2
q +

∥∥∥Rφ(β̂)
∥∥∥
q

= OP ((NT )
−1/4+1/(2q)).
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Thus, for R̂∆
1 := R∆

1 (β̂, φ̂),
∣∣∣R̂∆

1

∣∣∣ ≤ 1
2‖β̂ − β0‖2 sup

β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββ′∆(β, φ)‖

+ (NT )1/2−1/q‖β̂ − β0‖‖φ̂− φ0‖q sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφ′∆(β, φ)‖q

+ 1
6 (NT )

1/2−1/q‖φ̂− φ0‖3q sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφ∆(β, φ)‖q

= oP (1/
√
NT ).

Again by the expansion of φ̂ = φ̂(β̂) from Theorem B.1,

δ̂ − δ = ∆(β̂, φ̂)−∆ =
(
∂β′∆+ [∂φ∆]′H−1[∂φβ′L]

)
(β̂ − β0)

+ [∂φ∆]′H−1

(
S + 1

2

dimφ∑

g=1

[∂φφ′φgL]H−1S[H−1S]g
)

+ 1
2 S ′H−1[∂φφ′∆]H−1S +R∆

2 , (B.8)

where

∣∣R∆
2

∣∣ =
∣∣∣R∆

1 + [∂φ∆]′Rφ(β̂) + 1
2 (φ̂− φ0 +H−1S)′[∂φφ′∆](φ̂− φ0 −H−1S)

∣∣∣

≤
∣∣R∆

1

∣∣ + (NT )1/2−1/q ‖∂φ∆‖q
∥∥∥Rφ(β̂)

∥∥∥
q

+ 1
2 (NT )

1/2−1/q
∥∥∥φ̂− φ0 +H−1S

∥∥∥
q
‖∂φφ′∆‖q

∥∥∥φ̂− φ0 −H−1S
∥∥∥
q

= oP (1/
√
NT ),

that uses
∥∥∥φ̂− φ0 −H−1S

∥∥∥
q
= OP

(
(NT )−1/2+1/q+ǫ

)
. From equation (B.8), the terms of the expansion

for δ̂− δ are analogous to the terms of the expansion for the score in Theorem B.1, with ∆(β, φ) taking

the role of 1√
NT

∂βk
L(β, φ). �

C Proofs of Section 4

C.1 Application of General Expansion to Panel Estimators

We now apply the general expansion of appendix B to the panel fixed effects estimators considered in

the main text. For the objective function specified in (2.1) and (4.1), the incidental parameter score

evaluated at the true parameter value is

S =




[
1√
NT

∑T
t=1 ∂πℓit

]
i=1,...,N[

1√
NT

∑N
i=1 ∂πℓit

]
t=1,...,T


 .

The penalty term in the objective function does not contribute to S, because at the true parameter value

v′φ0 = 0. The corresponding expected incidental parameter Hessian H is given in (4.2). Section D.4

discusses the structure of H and H−1
in more detail. Define

Λit := − 1√
NT

N∑

j=1

T∑

τ=1

(
H−1

(αα)ij +H−1

(γα)tj +H−1

(αγ)iτ +H−1

(γγ)tτ

)
∂πℓjτ , (C.1)
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and the operator Dβ∆it := ∂β∆it − ∂π∆itΞit, which are similar to Ξit and Dβℓit in equation (4.3).

The following theorem shows that Assumption 4.1 and Assumption 4.2 for the panel model are

sufficient for Assumption B.1 and Assumption B.2 for the general expansion, and particularizes the

terms of the expansion to the panel estimators.

Theorem C.1. Consider an estimator with objective function given by (2.1) and (4.1). Let Assump-

tion 4.1 be satisfied and suppose that the limit W∞ defined in Theorem 4.1 exists and is positive definite.

Let q = 8, ǫ = 1/(16 + 2ν), rβ,NT = log(NT )(NT )−1/8 and rφ,NT = (NT )−1/16. Then,

(i) Assumption B.1 holds and ‖β̂ − β0‖ = OP ((NT )
−1/4).

(ii) The approximate Hessian and the terms of the score defined in Theorem B.1 can be written as

W = − 1

NT

N∑

i=1

T∑

t=1

Eφ (∂ββ′ℓit − ∂π2ℓitΞitΞ
′
it) ,

U (0) =
1√
NT

N∑

i=1

T∑

t=1

Dβℓit,

U (1) =
1√
NT

N∑

i=1

T∑

t=1

{
−Λit [Dβπℓit − Eφ(Dβπℓit)] +

1

2
Λ2
it Eφ(Dβπ2ℓit)

}
.

(iii) In addition, let Assumption 4.2 hold. Then, Assumption B.2 is satisfied for the partial effects

defined in (2.2). By Theorem B.4,

√
NT

(
δ̂ − δ

)
= V

(0)
∆ + V

(1)
∆ + oP (1),

where

V
(0)
∆ =


 1

NT

∑

i,t

Eφ(Dβ∆it)



′

W
−1

∞ U (0) − 1√
NT

∑

i,t

Eφ(Ψit)∂πℓit,

V
(1)
∆ =


 1

NT

∑

i,t

Eφ(Dβ∆it)



′

W
−1

∞ U (1) +
1√
NT

∑

i,t

Λit [Ψit∂π2ℓit − Eφ(Ψit)Eφ(∂π2ℓit)]

+
1

2
√
NT

∑

i,t

Λ2
it [Eφ(∂π2∆it)− Eφ(∂π3ℓit)Eφ(Ψit)] .

Proof of Theorem C.1, Part (i). Assumption B.1(i) is satisfied because limN,T→∞
dimφ√
NT

= limN,T→∞
N+T√
NT

=

κ+ κ−1.

Assumption B.1(ii) is satisfied because ℓit(β, π) and (v′φ)2 are four times continuously differentiable

and the same is true for L(β, φ).
Let D = diag

(
H∗

(αα),H
∗
(γγ)

)
. Then,

∥∥∥D−1
∥∥∥
∞

= OP (1) by Assumption 4.1(v). By the properties

of the matrix norms and Lemma D.8,
∥∥∥H−1 −D−1

∥∥∥
∞

≤ (N + T )
∥∥∥H−1 −D−1

∥∥∥
max

= OP (1). Thus,
∥∥∥H−1

∥∥∥
q
≤
∥∥∥H−1

∥∥∥
∞

≤
∥∥∥D−1

∥∥∥
∞

+
∥∥∥H−1 − D−1

∥∥∥
∞

= OP (1) by Lemma D.4 and the triangle inequality.

We conclude that Assumption B.1(iv) holds.

We now show that the assumptions of Lemma D.7 are satisfied:
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(i) By Lemma D.2, χi =
1√
T

∑
t ∂βk

ℓit satisfies Eφ(χ
2
i ) ≤ B. Thus, by independence across i

Eφ





 1√

NT

∑

i,t

∂βk
ℓit




2

 = Eφ



(

1√
N

∑

i

χi

)2

 =

1

N

∑

i

Eφχ
2
i ≤ B,

and therefore 1√
NT

∑
i,t ∂βk

ℓit = OP (1). Analogously,
1

NT

∑
i,t {∂βkβl

ℓit − Eφ [∂βkβl
ℓit]} = OP (1/

√
NT ) =

oP (1). Next,

Eφ


 sup

β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

1

NT

∑

i,t

∂βkβlβmℓit(β, πit)




2

≤ Eφ


 sup

β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

NT

∑

i,t

|∂βkβlβmℓit(β, πit)|




2

≤ Eφ


 1

NT

∑

i,t

M(Zit)




2

≤ Eφ
1

NT

∑

i,t

M(Zit)
2 =

1

NT

∑

i,t

EφM(Zit)
2 = OP (1),

and therefore supβ∈B(rβ,β0) supφ∈Bq(rφ,φ0)
1

NT

∑
i,t ∂βkβlβmℓit(β, πit) = OP (1). A similar argument

gives 1
NT

∑
i,t ∂βkβl

ℓit = OP (1).

(ii) For ξit(β, φ) = ∂βkπℓit(β, πit) or ξit(β, φ) = ∂βkβlπℓit(β, πit),

Eφ

[
sup

β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

T

∑

t

∣∣∣∣∣
1

N

∑

i

ξit(β, φ)

∣∣∣∣∣

q]

≤ Eφ

[
sup

β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

1

T

∑

t

(
1

N

∑

i

|ξit(β, φ)|
)q]

≤ Eφ

[
1

T

∑

t

(
1

N

∑

i

M(Zit)

)q]
≤ Eφ

[
1

T

∑

t

1

N

∑

i

M(Zit)
q

]

=
1

T

∑

t

1

N

∑

i

EφM(Zit)
q = OP (1),

i.e. supβ∈B(rβ ,β0) supφ∈Bq(rφ,φ0)
1
T

∑
t

∣∣ 1
N

∑
i ξit(β, φ)

∣∣q = OP (1). Analogously, it follows that

supβ∈B(rβ ,β0) supφ∈Bq(rφ,φ0)
1
N

∑
i

∣∣ 1
T

∑
t ξit(β, φ)

∣∣q = OP (1).

(iii) For ξit(β, φ) = ∂πrℓit(β, πit), with r ∈ {3, 4}, or ξit(β, φ) = ∂βkπrℓit(β, πit), with r ∈ {2, 3}, or
ξit(β, φ) = ∂βkβlπ2ℓit(β, πit),

Eφ



(

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

max
i

1

T

∑

t

|ξit(β, φ)|
)(8+ν)




= Eφ


max

i

(
sup

β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

T

∑

t

|ξit(β, φ)|
)(8+ν)




≤ Eφ


∑

i

(
sup

β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

1

T

∑

t

|ξit(β, φ)|
)(8+ν)


 ≤ Eφ


∑

i

(
1

T

∑

t

M(Zit)

)(8+ν)



≤ Eφ

[∑

i

1

T

∑

t

M(Zit)
(8+ν)

]
=
∑

i

1

T

∑

t

EφM(Zit)
(8+ν) = OP (N).
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Thus, supβ∈B(rβ ,β0) supφ∈Bq(rφ,φ0) maxi
1
T

∑
t |ξit(β, φ)| = OP

(
N1/(8+ν)

)
= OP

(
N2ǫ

)
. Analo-

gously, it follows that supβ∈B(rβ ,β0) supφ∈Bq(rφ,φ0) maxt
1
N

∑
i |ξit(β, φ)| = OP

(
N2ǫ

)
.

(iv) Let χt = 1√
N

∑
i ∂πℓit. By cross-sectional independence and Eφ(∂πℓit)

8 ≤ EφM(Zit)
8 = OP (1),

Eφχ
8
t = OP (1) uniformly over t. Thus, Eφ

1
T

∑
t χ

8
t = OP (1) and therefore 1

T

∑
t

∣∣∣ 1√
N

∑
i ∂πℓit

∣∣∣
q

=

OP (1), with q = 8.

Let χi = 1√
T

∑
t ∂πℓit(β

0, π0
it). By Lemma D.2 and Eφ(∂πℓit)

8+ν ≤ EφM(Zit)
8+ν = OP (1),

Eφχ
8
i = OP (1) uniformly over i. Here we use µ > 4/[1− 8/(8+ ν)] = 4(8+ ν)/ν that is imposed in

Assumption B.1. Thus, Eφ
1
N

∑
i χ

8
i = OP (1) and therefore 1

N

∑
i

∣∣∣ 1√
T

∑
t ∂πℓit

∣∣∣
q

= OP (1), with

q = 8.

The proofs for 1
T

∑
t

∣∣∣ 1√
N

∑
i ∂βkπℓit − Eφ [∂βkπℓit]

∣∣∣
2

= OP (1) and 1
N

∑
i

∣∣∣ 1√
T

∑
t ∂βkπℓit−Eφ [∂βkπℓit]

∣∣∣
2

=

OP (1) are analogous.

(v) It follows by the independence of {(ℓi1, . . . , ℓiT ) : 1 ≤ i ≤ N} across i, conditional on φ, in

Assumption B.1(ii).

(vi) Let ξit = ∂πrℓit(β
0, π0

it)−Eφ [∂πrℓit], with r ∈ {2, 3}, or ξit = ∂βkπ2ℓit(β
0, π0

it)−Eφ

[
∂βkπ2ℓit

]
. For

ν̃ = ν, maxi Eφ

[
ξ8+ν̃
it

]
= OP (1) by assumption. By Lemma D.1,

∣∣∣∣∣
∑

s

Eφ [ξitξis]

∣∣∣∣∣ =
∑

s

|Covφ (ξit, ξis)|

≤
∑

s

[8 a(|t− s|)]1−2/(8+ν)
[
Eφ|ξt|8+ν

]1/(8+ν) [
Eφ|ξs|8+ν

]1/(8+ν)

= C̃

∞∑

m=1

m−µ[1−2/(8+ν)] ≤ C̃

∞∑

m=1

m−4 = C̃π4/90,

where C̃ is a constant. Here we use that µ > 4(8+ ν)/ν implies µ[1− 2/(8+ ν) > 4. We thus have

shown maxi maxt
∑

s Eφ [ξitξjs] ≤ C̃π4/90 =: C.

Analogous to the proof of part (iv), we can use Lemma D.2 to obtain maxi Eφ

{[
1√
T

∑
t ξit

]8}
≤ C,

and independence across i to obtain maxt Eφ

{[
1√
N

∑
i ξit

]8}
≤ C. Similarly, by Lemma D.2

max
i,j

Eφ





[
1√
T

∑

t

[ξitξjt − Eφ (ξitξjt)]

]4
 ≤ C,

which requires µ > 2/[1− 4/(4 + ν/2)], which is implied by the assumption that µ > 4(8 + ν)/ν.

(vii) We have already shown that
∥∥∥H−1

∥∥∥
q
= OP (1).

Therefore, we can apply Lemma D.7, which shows that Assumption B.1(v) and (vi) hold. We have al-

ready shown that Assumption B.1(i), (ii), (iv), (v) and (vi) hold. One can also check that (NT )−1/4+1/(2q) =

oP (rφ) and (NT )1/(2q)rβ = oP (rφ) are satisfied. In addition, L(β, φ) is strictly concave. We can therefore

invoke Theorem B.3 to show that Assumption B.1(iii) holds and that ‖β̂ − β0‖ = OP ((NT )
−1/4). �

Proof of Theorem C.1, Part (ii). For any N×T matrix A we define the N×T matrix PA as follows

(PA)it = α∗
i + γ∗t , (α∗, γ∗) ∈ argmin

α,γ

∑

i,t

Eφ(−∂π2ℓit) (Ait − αi − γt)
2 . (C.2)
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Here, the minimization is over α ∈ RN and γ ∈ RT . The operator P is a linear projection, i.e. we have

PP = P. It is also convenient to define

P̃A = PÃ, where Ãit =
Ait

Eφ(−∂π2ℓit)
. (C.3)

P̃ is a linear operator, but not a projection. Note that Λ and Ξ defined in (C.1) and (4.3) can be written

as Λ = P̃A and Ξk = P̃Bk, where Ait = −∂πℓit and Bk,it = −Eφ(∂βkπℓit), for k = 1, . . . , dimβ.17

By Lemma D.11(ii),

W = − 1√
NT

(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)
= − 1

NT

N∑

i=1

T∑

t=1

[Eφ (∂ββ′ℓit) + Eφ (−∂π2ℓit) ΞitΞ
′
it] .

By Lemma D.11(i),

U (0) = ∂βL+ [∂βφ′L]H−1S =
1√
NT

∑

i,t

(∂βℓit − Ξit ∂πℓit) =
1√
NT

N∑

i=1

T∑

t=1

Dβℓit.

We decompose U (1) = U (1a) + U (1b), with

U (1a) = [∂βφ′L̃]H−1S − [∂βφ′L]H−1 H̃H−1 S,

U (1b) =

dimφ∑

g=1

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)
H−1S[H−1S]g/2.

By Lemma D.11(i) and (iii),

U (1a) = − 1√
NT

∑

i,t

Λit

(
∂βπ ℓ̃it + Ξit ∂π2 ℓ̃it

)
= − 1√

NT

N∑

i=1

T∑

t=1

Λit [Dβπℓit − Eφ(Dβπℓit)] ,

and

U (1b) =
1

2
√
NT

∑

i,t

Λ2
it

[
Eφ(∂βπ2ℓit) + [∂βφ′L]H−1

Eφ(∂φ∂π2ℓit)
]
,

where for each i, t, ∂φ∂π2ℓit is a dimφ-vector, which can be written as ∂φ∂π2ℓit =
(
A1T
A′1N

)
for an N × T

matrix A with elements Ajτ = ∂π3ℓjτ if j = i and τ = t, and Ajτ = 0 otherwise. Thus, Lemma D.11(i)

gives [∂βφ′L]H−1
∂φ∂π2ℓit = −∑j,τ Ξjτ1(i = j)1(t = τ)∂π3ℓit = −Ξit∂π3ℓit. Therefore

U (1b) =
1

2
√
NT

∑

i,t

Λ2
itEφ

(
∂βπ2ℓit − Ξit∂π3ℓit

)
=

1

2
√
NT

N∑

i=1

T∑

t=1

Λ2
it Eφ(Dβπ2ℓit).

�

Proof of Theorem C.1, Part (iii). Showing that Assumption B.2 is satisfied is analogous to the

proof of Lemma D.7 and of part (ii) of this Theorem.

17Bk and Ξk are N × T matrices with entries Bk,it and Ξk,it, respectively, while Bit and Ξit are dimβ-vectors with entries

Bk,it and Ξk,it.
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In the proof of Theorem 4.1 we show that Assumption 4.1 implies that U = OP (1). This fact

together with part (i) of this theorem show that Corollary B.2 is applicable, so that
√
NT (β̂ − β0) =

W
−1

∞ U + oP (1) = OP (1), and we can apply Theorem B.4.

By Lemma D.11 and the result for
√
NT (β̂ − β0),

√
NT

[
∂β′∆+ (∂φ′∆)H−1

(∂φβ′L)
]
(β̂ − β0) =


 1

NT

∑

i,t

Eφ(Dβ∆it)



′

W
−1

∞

(
U (0) + U (1)

)
+ oP (1).

(C.4)

We apply Lemma D.11 to U
(0)
∆ and U

(1)
∆ defined in Theorem B.4 to give

√
NT U

(0)
∆ = − 1√

NT

∑

i,t

Eφ(Ψit)∂πℓit,

√
NT U

(1)
∆ =

1√
NT

∑

i,t

Λit [Ψit∂π2ℓit − Eφ(Ψit)Eφ(∂π2ℓit)]

+
1

2
√
NT

∑

i,t

Λ2
it [Eφ(∂π2∆it)− Eφ(∂π3ℓit)Eφ(Ψit)] . (C.5)

The derivation of (C.4) and (C.5) is analogous to the proof of the part (ii) of the Theorem. Combining

Theorem B.4 with equations (C.4) and (C.5) gives the result. �

C.2 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. # First, we want to show that U (0) →d N (0, W∞). In our likelihood setting,

Eφ∂βL = 0, EφS = 0, and, by the Bartlett identities, Eφ(∂βL∂β′L) = − 1√
NT

∂ββ′L, Eφ(∂βLS ′) =

− 1√
NT

∂βφ′L and Eφ(SS ′) = 1√
NT

(
H− b√

NT
vv′
)
. Furthermore, S ′v = 0 and ∂βφ′Lv = 0. Then, by

definition of W = − 1√
NT

(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)
and U (0) = ∂βL+ [∂βφ′L]H−1S,

Eφ

(
U (0)

)
= 0, Var

(
U (0)

)
=W,

which implies that limN,T→∞ Var
(
U (0)

)
= limN,T→∞W = W∞. Moreover, part (ii) of Theorem C.1

yields

U (0) =
1√
NT

N∑

i=1

T∑

t=1

Dβℓit,

where Dβℓit = ∂βℓit − ∂πℓitΞit is a martingale difference sequence for each i and independent across i,

conditional on φ. Thus, by Lemma D.3 and the Cramer-Wold device we conclude that

U (0) →d N
[
0, lim

N,T→∞
Var

(
U (0)

)]
∼ N (0, W∞).

# Next, we show that U (1) →P κB∞+κ−1D∞. Part (ii) of Theorem C.1 gives U (1) = U (1a)+U (1b),

with

U (1a) = − 1√
NT

N∑

i=1

T∑

t=1

Λit [Dβπℓit − Eφ(Dβπℓit)] ,

U (1b) =
1

2
√
NT

N∑

i=1

T∑

t=1

Λ2
it Eφ(Dβπ2ℓit).
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Plugging-in the definition of Λit, we decompose U (1a) = U (1a,1) + U (1a,2) + U (1a,3) + U (1a,4), where

U (1a,1) =
1

NT

∑

i,j

H−1

(αα)ij

(∑

τ

∂πℓjτ

)∑

t

[Dβπℓit − Eφ(Dβπℓit)] ,

U (1a,2) =
1

NT

∑

j,t

H−1

(γα)tj

(∑

τ

∂πℓjτ

)∑

i

[Dβπℓit − Eφ(Dβπℓit)] ,

U (1a,3) =
1

NT

∑

i,τ

H−1

(αγ)iτ


∑

j

∂πℓjτ


∑

t

[Dβπℓit − Eφ(Dβπℓit)] ,

U (1a,4) =
1

NT

∑

t,τ

H−1

(γγ)tτ


∑

j

∂πℓjτ


∑

i

[Dβπℓit − Eφ(Dβπℓit)] .

By the Cauchy-Schwarz inequality applied to the sum over t in U (1a,2),

(
U (1a,2)

)2
≤ 1

(NT )2



∑

t


∑

j,τ

H−1

(γα)tj∂πℓjτ




2




∑

t

(∑

i

[Dβπℓit − Eφ(Dβπℓit)]

)2

 .

By Lemma D.8, H−1

(γα)tj = OP (1/
√
NT ), uniformly over t, j. Using that both

√
NT H−1

(γα)tj∂πℓjτ and

Dβπℓit − Eφ(Dβπℓit) are mean zero, independence across i and Lemma D.2 across t, we obtain

Eφ


 1√

NT

∑

j,τ

[
√
NT H−1

(γα)tj]∂πℓjτ




2

= OP (1), Eφ

(
1√
N

∑

i

[Dβπℓit − Eφ(Dβπℓit)]

)2

= OP (1),

uniformly over t. Thus,
∑

t

(∑
j,τ H

−1

(γα)tj∂πℓjτ

)2
= OP (T ) and

∑
t (
∑

i [Dβπℓit − Eφ(Dβπℓit)])
2
=

OP (NT ). We conclude that

(
U (1a,2)

)2
=

1

(NT )2
OP (T )OP (NT ) = OP (1/N) = oP (1),

and therefore that U (1a,2) = oP (1). Analogously one can show that U (1a,3) = oP (1).

By Lemma D.8, H−1

(αα) = −diag

[(
1√
NT

∑T
t=1 Eφ(∂π2ℓit

)−1
]
+ OP (1/

√
NT ). Analogously to the

proof of U (1a,2) = oP (1), one can show that the OP (1/
√
NT ) part of H−1

(αα) has an asymptotically

negligible contribution to U (1a,1). Thus,

U (1a,1) = − 1√
NT

∑

i

(
∑

τ ∂πℓiτ )
∑

t [Dβπℓit − Eφ(Dβπℓit)]∑
t Eφ(∂π2ℓit)︸ ︷︷ ︸
=:U

(1a,1)
i

+oP (1).

Our assumptions guarantee that Eφ

[(
U

(1a,1)
i

)2]
= OP (1), uniformly over i. Note that both the de-

nominator and the numerator of U
(1a,1)
i are of order T . For the denominator this is obvious because of

the sum over T . For the numerator there are two sums over T , but both ∂πℓiτ and Dβπℓit −Eφ(Dβπℓit)

are mean zero weakly correlated processes, so that their sums are of order
√
T . By the WLLN over i
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(remember that we have cross-sectional independence, conditional on φ, and we assume finite moments),

N−1
∑

i U
(1a,1)
i = N−1

∑
i EφU

(1a,1)
i + oP (1), and therefore

U (1a,1) = −
√
N

T

1

N

N∑

i=1

∑T
t=1

∑T
τ=t Eφ (∂πℓitDβπℓiτ )∑T
t=1 Eφ (∂π2ℓit)︸ ︷︷ ︸

=:
√

N
T B

(1)

+oP (1).

Here, we use that Eφ (∂πℓitDβπℓiτ ) = 0 for t > τ . Analogously,

U (1a,4) = −
√
T

N

1

T

T∑

t=1

∑N
i=1 Eφ (∂πℓitDβπℓit)∑N

i=1 Eφ (∂π2ℓit)︸ ︷︷ ︸
=:
√

T
N D

(1)

+oP (1).

We conclude that U (1a) = κB
(1)

+ κ−1D
(1)

+ oP (1).

Next, we analyze U (1b). We decompose Λit = Λ
(1)
it + Λ

(2)
it + Λ

(3)
it + Λ

(4)
it , where

Λ
(1)
it = − 1√

NT

N∑

j=1

H−1

(αα)ij

T∑

τ=1

∂πℓjτ , Λ
(2)
it = − 1√

NT

N∑

j=1

H−1

(γα)tj

T∑

τ=1

∂πℓjτ ,

Λ
(3)
it = − 1√

NT

T∑

τ=1

H−1

(αγ)iτ

T∑

τ=1

∂πℓjτ , Λ
(4)
it = − 1√

NT

T∑

τ=1

H−1

(γγ)tτ

T∑

τ=1

∂πℓjτ .

This decomposition of Λit induces the following decomposition of U (1b)

U (1b) =

4∑

p,q=1

U (1b,p,q), U (1b,p,q) =
1

2
√
NT

N∑

i=1

T∑

t=1

Λ
(p)
it Λ

(q)
it Eφ(Dβπ2ℓit).

Due to the symmetry U (1b,p,q) = U (1b,q,p), this decomposition has 10 distinct terms. Start with U (1b,1,2)

noting that

U (1b,1,2) =
1√
NT

N∑

i=1

U
(1b,1,2)
i ,

U
(1b,1,2)
i =

1

2T

T∑

t=1

Eφ(Dβπ2ℓit)
1

N2

N∑

j1,j2=1

[
NTH−1

(αα)ij1H
−1

(γα)tj2

]( 1√
T

T∑

τ=1

∂πℓj1τ

)(
1√
T

T∑

τ=1

∂πℓj2τ

)
.

By Eφ(∂πℓit) = 0, Eφ(∂πℓit∂πℓjτ ) = 0 for (i, t) 6= (j, τ), and the properties of the inverse expected Hessian

from Lemma D.8, Eφ

[
U

(1b,1,2)
i

]
= OP (1/N), uniformly over i, Eφ

[(
U

(1b,1,2)
i

)2]
= OP (1), uniformly

over i, and Eφ

[
U

(1b,1,2)
i U

(1b,1,2)
j

]
= OP (1/N), uniformly over i 6= j. This implies that Eφ U

(1b,1,2) =

OP (1/N) and Eφ

[(
U (1b,1,2) − Eφ U

(1b,1,2)
)2]

= OP (1/
√
N), and therefore U (1b,1,2) = oP (1). By similar

arguments one obtains U (1b,p,q) = oP (1) for all combinations of p, q = 1, 2, 3, 4, except for p = q = 1 and

p = q = 4.

For p = q = 1,

U (1b,1,1) =
1√
NT

N∑

i=1

U
(1b,1,1)
i ,

U
(1b,1,1)
i =

1

2T

T∑

t=1

Eφ(Dβπ2ℓit)
1

N2

N∑

j1,j2=1

[
NTH−1

(αα)ij1H
−1

(αα)ij2

]( 1√
T

T∑

τ=1

∂πℓj1τ

)(
1√
T

T∑

τ=1

∂πℓj2τ

)
.
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Analogous to the result for U (1b,1,2), Eφ

[(
U (1b,1,1) − Eφ U

(1b,1,1)
)2]

= OP (1/
√
N), and therefore U (1b,1,1) =

Eφ U
(1b,1,1) + o(1). Furthermore,

Eφ U
(1b,1,1) =

1

2
√
NT

N∑

i=1

∑T
t=1 Eφ(Dβπ2ℓit)Eφ

[
(∂πℓit)

2
]

[∑T
t=1 Eφ (∂π2ℓit)

]2 + o(1)

= −
√
N

T

1

2N

N∑

i=1

∑T
t=1 Eφ(Dβπ2ℓit)∑T
t=1 Eφ (∂π2ℓit)︸ ︷︷ ︸

=:
√

N
T B

(2)

+o(1).

Analogously,

U (1b,4,4) = Eφ U
(1b,4,4) + oP (1) = −

√
T

N

1

2T

T∑

t=1

∑N
i=1 Eφ(Dβπ2ℓit)∑N
i=1 Eφ (∂π2ℓit)︸ ︷︷ ︸

=:
√

T
N D

(2)

+o(1).

We have thus shown that U (1b) = κB
(2)

+ κ−1D
(2)

+ oP (1). Since B∞ = limN,T→∞[B
(1)

+ B
(2)

] and

D∞ = limN,T→∞[D
(1)

+D
(2)

] we thus conclude U (1) = κB∞ + κ−1D∞ + oP (1).

#We have shown U (0) →d N (0, W∞), and U (1) →P κB∞+κ−1D∞. Then, part (ii) of Theorem C.1

yields
√
NT (β̂ − β0) →d W

−1

∞ N (κB∞ + κ−1D∞, W∞). �

Proof of Theorem 4.2. We consider the case of scalar ∆it to simplify the notation. Decompose

rNT (δ̂ − δ0NT −B
δ

∞/T −D
δ

∞/N) = rNT (δ − δ0NT ) +
rNT√
NT

√
NT (δ̂ − δ −B

δ

∞/T −D
δ

∞/N).

# Part (1): Limit of
√
NT (δ̂ − δ − B

δ

∞/T − D
δ

∞/N). An argument analogous to to the proof of

Theorem 4.1 using Theorem C.1(iii) yields

√
NT (δ̂ − δ) →d N

(
κB

δ

∞ + κ−1D
δ

∞, V
δ(1)

∞

)
,

where V
δ(1)

∞ = E

{
(NT )−1

∑
i,t Eφ[Γ

2
it]
}
, for the expressions of B

δ

∞, D
δ

∞, and Γit given in the statement

of the theorem. Then, by Mann-Wald theorem

√
NT (δ̂ − δ −B

δ

∞/T −D
δ

∞/N) →d N
(
0, V

δ(1)

∞

)
.

# Part (2): Limit of rNT (δ − δ0NT ). Here we show that rNT (δ − δ0NT ) →d N (0, V
δ(2)

∞ ) for the rates

of convergence rNT given in Remark 2, and characterize the asymptotic variance V
δ(2)

∞ . We determine

rNT through E[(δ − δ0NT )
2] = O(r−2

NT ) and r
−2
NT = O(E[(δ − δ0NT )

2]), where

E[(δ − δ0NT )
2] = E





 1

NT

∑

i,t

∆̃it




2

 =

1

N2T 2

∑

i,j,t,s

E

[
∆̃it∆̃js

]
, (C.6)

for ∆̃it = ∆it − E(∆it). Then, we characterize V
δ(2)

∞ as V
δ(2)

∞ = E{r2NTE[(δ − δ0NT )
2]}, because E[δ −

δ0NT ] = 0. The order of E[(δ− δ0NT )
2] is equal to the number of terms of the sums in equation (C.6) that

are non zero, which it is determined by the sample properties of {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T )}.
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Under Assumption 4.2(i)(a),

E[(δ − δ0NT )
2] =

1

N2T 2

∑

i,t,s

E

[
∆̃it∆̃is

]
= O

(
N−1

)
,

because {∆̃it : 1 ≤ i ≤ N ; 1 ≤ t ≤ T } is independent across i and α-mixing across t.

Under Assumption 4.2(i)(b), if {αi}N and {γt}T are independent sequences, and αi and γt are

independent for all i, t, then E[∆̃it∆̃js] = E[∆̃it]E[∆̃js] = 0 if i 6= j and t 6= s, so that

E[(δ − δ0NT )
2] =

1

N2T 2




∑

i,t,s

E

[
∆̃it∆̃is

]
+
∑

i,j,t

E

[
∆̃it∆̃jt

]
−
∑

i,t

E

[
∆̃2

it

]


 = O

(
N + T − 1

NT

)
,

because E[∆̃it∆̃is] ≤ E[Eφ(∆̃
2
it)]

1/2E[Eφ(∆̃
2
is)]

1/2 < C by the Cauchy-Schwarz inequality and Assump-

tion 4.2(ii). We conclude that rNT =
√
NT/(N + T − 1) and

V
δ(2)

= E





r2NT

N2T 2


∑

i,t,s

E

[
∆̃it∆̃is

]
+
∑

i6=j,t

E

[
∆̃it∆̃jt

]




 .

Note that in both cases rNT → ∞ and rNT = O(
√
NT ).

# Part (3): limit of rNT (δ̂ − δ0NT − T−1B
δ

∞ − N−1D
δ

∞). The conclusion of the Theorem follows

because (δ − δ0NT ) and (δ̂ − δ − T−1B
δ

∞ −N−1D
δ

∞) are asymptotically independent and V
δ

∞ = V
δ(2)

+

V
δ(1)

limN,T→∞(rNT /
√
NT )2. �

C.3 Proofs of Theorems 4.3 and 4.4

We start with a lemma that shows the consistency of the fixed effects estimators of averages of the data

and parameters. We will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

Lemma C.2. Let G(β, φ) := [N(T − j)]−1
∑

i,t≥j+1 g(Xit, Xi,t−j , β, αi + γt, αi + γt−j) for 0 ≤ j < T,

and B0
ε be a subset of Rdim β+2 that contains an ε-neighborhood of (β, π0

it, π
0
i,t−j) for all i, t, j, N, T ,

and for some ε > 0. Assume that (β, π1, π2) 7→ gitj(β, π1, π2) := g(Xit, Xi,t−j, β, π1, π2) is Lipschitz

continuous over B0
ε a.s, i.e. |gitj(β1, π11, π21) − gitj(β0, π10, π20)| ≤ Mitj‖(β1, π11, π21) − (β, π10, π20)‖

for all (β1, π11, π21) ∈ B0
ε , (β1, π11, π21) ∈ B0

ε , and some Mitj = OP (1) for all i, t, j, N, T . Let (β̂, φ̂) be

an estimator of (β, φ) such that ‖β̂ − β0‖ →P 0 and ‖φ̂− φ0‖∞ →P 0. Then,

G(β̂, φ̂) →P E[G(β0, φ0)],

provided that the limit exists.

Proof of Lemma C.2. By the triangle inequality

|G(β̂, φ̂)− E[G(β0, φ0)]| ≤ |G(β̂, φ̂)−G(β0, φ0)|+ oP (1),
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because |G(β0, φ0)−E[G(β0, φ0)]| = oP (1). By the local Lipschitz continuity of gitj and the consistency

of (β̂, φ̂),

|G(β̂, φ̂)−G(β0, φ0)| ≤ 1

N(T − j)

∑

i,t≥j+1

Mitj‖(β̂, α̂i + γ̂t, α̂i + γ̂t−j)− (β0, α0
i + γ0t , α

0
i + γ0t−j)‖

≤ 1

N(T − j)

∑

i,t≥j+1

Mitj(‖β̂ − β0‖+ 4‖φ̂− φ0‖∞)

wpa1. The result then follows because [N(T−j)]−1
∑

i,τ≥tMitτ = OP (1) and (‖β̂−β0‖+4‖φ̂−φ0‖∞) =

oP (1) by assumption. �

Proof of Theorem 4.3. We separate the proof in three parts corresponding to the three statements

of the theorem.

Part I: Proof of Ŵ →P W∞. The asymptotic variance and its fixed effects estimators can be

expressed as W∞ = E[W (β0, φ0)] and Ŵ = W (β̂, φ̂), where W (β, φ) has a first order representation as

a continuously differentiable transformation of terms that have the form of G(β, φ) in Lemma C.2. The

result then follows by the continuous mapping theorem noting that ‖β̂ − β0‖ →P 0 and ‖φ̂ − φ0‖∞ ≤
‖φ̂− φ0‖q →P 0 by Theorem C.1.

Part II: Proof of
√
NT (β̃A − β0) →d N (0,W

−1

∞ ). By the argument given after equation (3.3) in the

text, we only need to show that B̂ →P B∞ and D̂ →P D∞. These asymptotic biases and their fixed

effects estimators are either time-series averages of fractions of cross-sectional averages, or vice versa.

The nesting of the averages makes the analysis a bit more cumbersome than the analysis of Ŵ , but

the result follows by similar standard arguments, also using that L → ∞ and L/T → 0 guarantee that

the trimmed estimator in B̂ is also consistent for the spectral expectations; see Lemma 6 in Hahn and

Kuersteiner (2011).

Part III: Proof of
√
NT (β̃J − β0) →d N (0,W

−1

∞ ). For T1 = {1, . . . , ⌊(T + 1)/2⌋}, T2 = {⌊T/2⌋ +
1, . . . , T }, T0 = T1 ∪ T2, N1 = {1, . . . , ⌊(N + 1)/2⌋}, N2 = {⌊N/2⌋+ 1, . . . , N}, and N0 = N1 ∪ N2, let

β̂(jk) be the fixed effect estimator of β in the subpanel defined by i ∈ Nj and t ∈ Tk.18 In this notation,

β̃J = 3β̂(00) − β̂(10)/2− β̂(20)/2− β̂(01)/2− β̂(02)/2.

We derive the asymptotic distribution of
√
NT (β̃J − β0) from the joint asymptotic distribution of

the vector B̂ =
√
NT (β̂(00) − β0, β̂(10) − β0, β̂(20) − β0, β̂(01) − β0, β̂(02) − β0) with dimension 5× dimβ.

By Theorem C.1,

√
NT (β̂(jk) − β0) =

21(j>0)21(k>0)

√
NT

∑

i∈Nj ,t∈Tk

[ψit + bit + dit] + oP (1),

for ψit = W
−1

∞ Dβℓit, bit = W
−1

∞ [U
(1a,1)
it + U

(1b,1,1)
it ], and dit = W

−1

∞ [U
(1a,4)
it + U

(1b,4,4)
it ], where the U

(·)
it

is implicitly defined by U (·) = (NT )−1/2
∑

i,t U
(·)
it . Here, none of the terms carries a superscript (jk)

by Assumption 4.3. The influence function ψit has zero mean and determines the asymptotic variance

18Note that this definition of the subpanels covers all the cases regardless of whether N and T are even or odd.
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W
−1

∞ , whereas bit and dit determine the asymptotic biases B∞ and D∞, but do not affect the asymptotic

variance. By this representation,

B̂ →d N



κ




1

1

1

2

2



⊗B∞ + κ−1




1

2

2

1

1



⊗D∞,




1 1 1 1 1

1 2 0 1 1

1 0 2 1 1

1 1 1 2 0

1 1 1 0 2



⊗W

−1

∞



,

where we use that {ψit : 1 ≤ i ≤ N, 1 ≤ t ≤ T } is independent across i and martingale difference across

t and Assumption 4.3.

The result follows by writing
√
NT (β̃J−β0) = (3,−1/2,−1/2,−1/2,−1/2)B̂ and using the properties

of the multivariate normal distribution. �

Proof of Theorem 4.4. We separate the proof in three parts corresponding to the three statements

of the theorem.

Part I: V̂ δ →P V
δ

∞. V
δ

∞ and V̂ δ have a similar structure to W∞ and Ŵ in part I of the proof of

Theorem 4.3, so that the consistency follows by an analogous argument.

Part II:
√
NT (δ̃A − δ0NT ) →d N (0, V

δ

∞). As in the proof of Theorem 4.2, we decompose

rNT (δ̃
A − δ0NT ) = rNT (δ − δ0NT ) +

rNT√
NT

√
NT (δ̃A − δ).

Then, by Mann-Wald theorem,

√
NT (δ̃A − δ) =

√
NT (δ̂ − B̂δ/T − D̂δ/N − δ) →d N (0, V

δ(1)

∞ ),

provided that B̂δ →P B
δ

∞ and D̂δ →P D
δ

∞, and rNT (δ − δ0NT ) →d N (0, V
δ(2)

∞ ), where V
δ(1)

∞ and V
δ(2)

∞

are defined as in the proof of Theorem 4.2. The statement thus follows by using a similar argument to

part II of the proof of Theorem 4.3 to show the consistency of B̂δ and D̂δ, and because (δ − δ0NT ) and

(δ̃A − δ) are asymptotically independent, and V
δ

∞ = V
δ(2)

+ V
δ(1)

limN,T→∞(rNT /
√
NT )2.

Part III:
√
NT (δ̃J − δ0NT ) →d N (0, V

δ

∞). As in part II, we decompose

rNT (δ̃
J − δ0NT ) = rNT (δ − δ0NT ) +

rNT√
NT

√
NT (δ̃J − δ).

Then, by an argument similar to part III of the proof of Theorem 4.3,

√
NT (δ̃J − δ) →d N (0, V

δ(1)

∞ ),

and rNT (δ − δ0NT ) →d N (0, V
δ(2)

∞ ), where V
δ(1)

∞ and V
δ(2)

∞ are defined as in the proof of Theorem 4.2.

The statement follows because (δ − δ0NT ) and (δ̃J − δ) are asymptotically independent, and V
δ

∞ =

V
δ(2)

+ V
δ(1)

limN,T→∞(rNT /
√
NT )2. �

D Useful Lemmas

D.1 Some Properties of Stochastic Processes

Here we collect some known properties of α-mixing processes, which are useful for our proofs.
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Lemma D.1. Let {ξt} be an α-mixing process with mixing coefficients a(m). Let E|ξt|p < ∞ and

E|ξt+m|q <∞ for some p, q ≥ 1 and 1/p+ 1/q < 1. Then,

|Cov (ξt, ξt+m)| ≤ 8 a(m)1/r [E|ξt|p]1/p [E|ξt+m|q]1/q ,

where r = (1− 1/p− 1/q)−1.

Proof of Lemma D.1. See, for example, Proposition 2.5 in Fan and Yao (2003). �

The following result is a simple modification of Theorem 1 in Cox and Kim (1995).

Lemma D.2. Let {ξt} be an α-mixing process with mixing coefficients a(m). Let r ≥ 1 be an integer,

and let δ > 2r, µ > r/(1−2r/δ), c > 0 and C > 0. Assume that supt E |ξt|δ ≤ C and that a(m) ≤ cm−µ

for all m ∈ {1, 2, 3, . . .}. Then there exists a constant B > 0 depending on r, δ, µ, c and C, but not

depending on T or any other distributional characteristics of ξt, such that for any T > 0,

E



(

1√
T

T∑

t=1

ξt

)2r

 ≤ B.

The following is a central limit theorem for martingale difference sequences.

Lemma D.3. Consider the scalar process ξit = ξNT,it, i = 1, . . . , N , t = 1, . . . , T . Let {(ξi1, . . . , ξiT ) :
1 ≤ i ≤ N} be independent across i, and be a martingale difference sequence for each i, N , T . Let

E|ξit|2+δ be uniformly bounded across i, t, N, T for some δ > 0. Let σ = σNT > ∆ > 0 for all sufficiently

large NT , and let 1
NT

∑
i,t ξ

2
it − σ2 →P 0 as NT → ∞.19 Then,

1

σ
√
NT

∑

i,t

ξit →d N (0, 1).

Proof of Lemma D.3. Define ξm = ξM,m = ξNT,it, with M = NT and m = T (i−1)+ t ∈ {1, . . . ,M}.
Then {ξm, m = 1, . . . ,M} is a martingale difference sequence. With this redefinition the statement of

the Lemma is equal to Corollary 5.26 in White (2001), which is based on Theorem 2.3 in Mcleish (1974),

and which shows that 1
σ
√
M

∑M
m=1 ξm →d N (0, 1). �

D.2 Some Bounds for the Norms of Matrices and Tensors

The following lemma provides bounds for the matrix norm ‖.‖q in terms of the matrix norms ‖.‖1, ‖.‖2,
‖.‖∞, and a bound for ‖.‖2 in terms of ‖.‖q and ‖.‖q/(q−1). For sake of clarity we use notation ‖.‖2 for

the spectral norm in this lemma, which everywhere else is denoted by ‖.‖, without any index. Recall

that ‖A‖∞ = maxi
∑

j |Aij | and ‖A‖1 = ‖A′‖∞.

Lemma D.4. For any matrix A we have

‖A‖q ≤ ‖A‖1/q1 ‖A‖1−1/q
∞ , for q ≥ 1,

‖A‖q ≤ ‖A‖2/q2 ‖A‖1−2/q
∞ , for q ≥ 2,

‖A‖2 ≤
√
‖A‖q‖A‖q/(q−1), for q ≥ 1.

19Here can allow for an arbitrary sequence of (N,T ) with NT → ∞.
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Note also that ‖A‖q/(q−1) = ‖A′‖q for q ≥ 1. Thus, for a symmetric matrix A, we have ‖A‖2 ≤ ‖A‖q ≤
‖A‖∞ for any q ≥ 1.

Proof of Lemma D.4. The statements follow from the fact that log ‖A‖q is a convex function of

1/q, which is a consequence of the Riesz-Thorin theorem. For more details and references see e.g.

Higham (1992). �

The following lemma shows that the norm ‖.‖q applied to higher-dimensional tensors with a special

structure can be expressed in terms of matrix norms ‖.‖q. In our panel application all higher dimensional

tensors have such a special structure, since they are obtained as partial derivatives wrt to α and γ from

the likelihood function.

Lemma D.5. Let a be an N -vector with entries ai, let b be a T -vector with entries bt, and let c be an

N × T matrix with entries cit. Let A be an N ×N × . . .×N︸ ︷︷ ︸
p times

tensor with entries

Ai1i2...ip =

{
ai1 if i1 = i2 = . . . = ip,

0 otherwise.

Let B be an T × T × . . .× T︸ ︷︷ ︸
r times

tensor with entries

Bt1t2...tr =

{
bt1 if t1 = t2 = . . . = tr,

0 otherwise.

Let C be an N ×N × . . .×N︸ ︷︷ ︸
p times

×T × T × . . .× T︸ ︷︷ ︸
r times

tensor with entries

Ci1i2...ipt1t2...tr =

{
ci1t1 if i1 = i2 = . . . = ip and t1 = t2 = . . . = tr,

0 otherwise.

Let C̃ be an T × T × . . .× T︸ ︷︷ ︸
r times

×N ×N × . . .×N︸ ︷︷ ︸
p times

tensor with entries

C̃t1t2...tri1i2...ip =

{
ci1t1 if i1 = i2 = . . . = ip and t1 = t2 = . . . = tr,

0 otherwise.

Then,

‖A‖q = max
i

|ai|, for p ≥ 2,

‖B‖q = max
t

|bt|, for r ≥ 2,

‖C‖q ≤ ‖c‖q, for p ≥ 1, r ≥ 1,

‖C̃‖q ≤ ‖c′‖q, for p ≥ 1, r ≥ 1,

where ‖.‖q refers to the q-norm defined in (A.1) with q ≥ 1.
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Proof of Lemma D.5. Since the vector norm ‖.‖q/(q−1) is dual to the vector norm ‖.‖q we can rewrite

the definition of the tensor norm ‖C‖q as follows

‖C‖q = max
‖u(1)‖q/(q−1)=1

max
‖u(k)‖q = 1

k = 2, . . . , p

max
‖v(l)‖q = 1

l = 1, . . . , r∣∣∣∣∣∣

N∑

i1i2...ip=1

T∑

t1t2...tr=1

u
(1)
i1
u
(2)
i2

· · ·u(p)ip
v
(1)
i1
v
(2)
t2 · · · v(r)tr Ci1i2...ipt1t2...tr

∣∣∣∣∣∣
.

The specific structure of C yields

‖C‖q = max
‖u(1)‖q/(q−1)=1

max
‖u(k)‖q = 1

k = 2, . . . , p

max
‖v(l)‖q = 1

l = 1, . . . , r

∣∣∣∣∣
N∑

i=1

T∑

t=1

u
(1)
i u

(2)
i · · ·u(p)i v

(1)
t v

(2)
t · · · v(r)t cit

∣∣∣∣∣

≤ max
‖u‖q/(q−1)≤1

max
‖v‖q≤1

∣∣∣∣∣
N∑

i=1

T∑

t=1

uivicit

∣∣∣∣∣ = ‖c‖q,

where we define u ∈ RN with elements ui = u
(1)
i u

(2)
i · · ·u(p)i and v ∈ RT with elements vt = v

(1)
t v

(2)
t · · · v(r)t ,

and we use that ‖u(k)‖q = 1, for k = 2, . . . , p, and ‖v(l)‖q = 1, for l = 2, . . . , r, implies |ui| ≤ |u(1)i |
and |vt| ≤ |v(1)t |, and therefore ‖u‖q/(1−q) ≤ ‖u(1)‖q/(1−q) = 1 and ‖v‖q ≤ ‖v(1)‖q = 1. The proof of

‖C̃‖q ≤ ‖c′‖q is analogous.

Let A(p) = A, as defined above, for a particular value of p. For p = 2, A(2) is a diagonal N × N

matrix with diagonal elements ai, so that ‖A(2)‖q ≤ ‖A(2)‖1/q1 ‖A(2)‖1−1/q
∞ = maxi |ai|. For p > 2,

∥∥∥A(p)
∥∥∥
q
= max

‖u(1)‖q/(q−1)=1
max

‖u(k)‖q = 1

k = 2, . . . , p

∣∣∣∣∣∣

N∑

i1i2...ip=1

u
(1)
i1
u
(2)
i2

· · ·u(p)ip
Ai1i2...ip

∣∣∣∣∣∣

= max
‖u(1)‖q/(q−1)=1

max
‖u(k)‖q = 1

k = 2, . . . , p

∣∣∣∣∣∣

N∑

i,j=1

u
(1)
i u

(2)
i · · ·u(p−1)

i u
(p)
j A

(2)
ij

∣∣∣∣∣∣

≤ max
‖u‖q/(q−1)≤1

max
‖v‖q=1

∣∣∣∣∣
N∑

i=1

T∑

t=1

uiviA
(2)
ij

∣∣∣∣∣ = ‖A(2)‖q ≤ max
i

|ai|,

where we define u ∈ RN with elements ui = u
(1)
i u

(2)
i · · ·u(p−1)

i and v = u(p), and we use that ‖u(k)‖p = 1,

for k = 2, . . . , p − 1, implies |ui| ≤ |u(1)i | and therefore ‖u‖q/(q−1) ≤ ‖u(1)‖q/(q−1) = 1. We have thus

shown
∥∥A(p)

∥∥ ≤ maxi |ai|. From the definition of
∥∥A(p)

∥∥
q
above, we obtain

∥∥A(p)
∥∥
q
≥ maxi |ai| by

choosing all u(k) equal to the standard basis vector, whose i∗’th component equals one, where i∗ ∈
argmaxi |ai|. Thus,

∥∥A(p)
∥∥
q
= maxi |ai| for p ≥ 2. The proof for ‖B‖q = maxt |bt| is analogous. �

The following lemma provides an asymptotic bound for the spectral norm of N × T matrices, whose

entries are mean zero, and cross-sectionally independent and weakly time-serially dependent conditional

on φ.

Lemma D.6. Let e be an N × T matrix with entries eit. Let σ̄2
i = 1

T

∑T
t=1 Eφ(e

2
it), let Ω be the T × T

matrix with entries Ωts = 1
N

∑N
i=1 Eφ(eiteis), and let ηij = 1√

T

∑T
t=1 [eitejt − Eφ(eitejt)]. Consider
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asymptotic sequences where N, T → ∞ such that N/T converges to a finite positive constant. Assume

that

(i) The distribution of eit is independent across i, conditional on φ, and satisfies Eφ(eit) = 0.

(ii) 1
N

∑N
i=1

(
σ̄2
i

)4
= OP (1),

1
T Tr(Ω

4) = OP (1),
1
N

∑N
i=1 Eφ

(
η4ii
)
= OP (1),

1
N2

∑N
i,j=1 Eφ

(
η4ij
)
=

OP (1).

Then, Eφ‖e‖8 = OP (N
5), and therefore ‖e‖ = OP (N

5/8).

Proof of Lemma D.6. Let ‖.‖F be the Frobenius norm of a matrix, i.e. ‖A‖F =
√
Tr(AA′). For

σ̄4
i = (σ̄2

i )
2, σ̄8

i = (σ̄2
i )

4 and δjk = 1(j = k),

‖e‖8 = ‖ee′ee′‖2 ≤ ‖ee′ee′‖2F =
N∑

i,j=1

(
N∑

k=1

T∑

t,τ=1

eitektekτejτ

)2

= T 2
N∑

i,j=1

[
N∑

k=1

(
ηik + T 1/2δikσ̄

2
i

)(
ηjk + T 1/2δjkσ̄

2
j

)]2

= T 2
N∑

i,j=1

(
N∑

k=1

ηikηjk + 2T 1/2ηij σ̄
2
i + Tδijσ̄

4
i

)2

≤ 3T 2
N∑

i,j=1



(

N∑

k=1

ηikηjk

)2

+ 4Tη2ijσ̄
4
i + T 2δij σ̄

8
i




= 3T 2
N∑

i,j=1

(
N∑

k=1

ηikηjk

)2

+ 12T 3
N∑

i,j=1

σ̄4
i η

2
ij + 3T 3

N∑

i=1

σ̄8
i ,

where we used that (a+ b+ c)2 ≤ 3(a2 + b2 + c3). By the Cauchy Schwarz inequality,

Eφ‖e‖8 ≤ 3T 2
Eφ




N∑

i,j=1

(
N∑

k=1

ηikηjk

)2

+ 12T 3

√√√√√
(
N

N∑

i=1

σ̄8
i

)


N∑

i,j=1

Eφ(η4ij)


 + 3T 3

N∑

i=1

σ̄8
i

= 3T 2
Eφ




N∑

i,j=1

(
N∑

k=1

ηikηjk

)2

+OP (T

3N2) +OP (T
3N).
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Moreover,

Eφ




N∑

i,j=1

(
N∑

k=1

ηikηjk

)2

 =

N∑

i,j,k,l=1

Eφ(ηikηjkηilηjl) =

N∑

i,j,k,l=1

Eφ(ηijηjkηklηli)

≤
∣∣∣∣∣

∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli)

∣∣∣∣∣+ 4

∣∣∣∣∣∣

N∑

i,j,k=1

aijkEφ(ηiiηijηjkηki)

∣∣∣∣∣∣
,

≤
∣∣∣∣∣

∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli)

∣∣∣∣∣+ 4








N∑

i,j,k=1

Eφ(η
4
ii)






N∑

i,j,k=1

Eφ(η
4
ij)



3




1/4

=

∣∣∣∣∣
∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli)

∣∣∣∣∣+ 4N3





[
1

N

N∑

i=1

Eφ(η
4
ii)

]
 1

N2

N∑

i,j=1

Eφ(η
4
ij)



3




1/4

=

∣∣∣∣∣
∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli)

∣∣∣∣∣+OP (N
3).

where in the second step we just renamed the indices and used that ηij is symmetric in i, j; and

aijk ∈ [0, 1] in the second line is a combinatorial pre-factor; and in the third step we applied the

Cauchy-Schwarz inequality.

Let Ωi be the T × T matrix with entries Ωi,ts = Eφ(eiteis) such that Ω = 1
N

∑N
i=1 Ωi. For i, j, k, l

mutually different,

Eφ (ηijηjkηklηli) =
1

T 2

T∑

t,s,u,v=1

Eφ(eitejtejseksekueluelveiv)

=
1

T 2

T∑

t,s,u,v=1

Eφ(eiveit)Eφ(ejtejs)Eφ(ekseku)Eφ(eluelv) =
1

T 2
Tr(ΩiΩjΩkΩl) ≥ 0

because Ωi ≥ 0 for all i. Thus,
∣∣∣∣∣

∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli)

∣∣∣∣ =
∑

i, j, k, l

mutually different

Eφ (ηijηjkηklηli) =
1

T 2

∑

i, j, k, l

mut. different

Tr(ΩiΩjΩkΩl)

≤ 1

T 2

N∑

i,j,k,l=1

Tr(ΩiΩjΩkΩl) =
N4

T 2
Tr(Ω4) = OP (N

4/T ).

Combining all the above results gives Eφ‖e‖8 = OP (N
5), since N and T are assumed to grow at the

same rate. �

D.3 Verifying the Basic Regularity Conditions in Panel Models

The following Lemma provides sufficient conditions under which the panel fixed effects estimators in the

main text satisfy the high-level regularity conditions in Assumptions B.1(v) and (vi).
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Lemma D.7. Let L(β, φ) = 1√
NT

[∑
i,t ℓit(β, πit)− b

2 (v
′φ)2

]
, where πit = αi + γt, α = (α1, . . . , αN )′,

γ = (γ1, . . . , γT ), φ = (α′, γ′)′, and v = (1′N , 1
′
T )

′. Assume that ℓit(., .) is four times continuously

differentiable in an appropriate neighborhood of the true parameter values (β0, φ0). Consider limits as

N, T → ∞ with N/T → κ2 > 0. Let 4 < q ≤ 8 and 0 ≤ ǫ < 1/8 − 1/(2q). Let rβ = rβ,NT > 0,

rφ = rφ,NT > 0, with rβ = o
[
(NT )−1/(2q)−ǫ

]
and rφ = o [(NT )−ǫ]. Assume that

(i) For k, l,m ∈ {1, 2, . . . , dimβ},
1√
NT

∑

i,t

∂βk
ℓit = OP (1),

1

NT

∑

i,t

∂βkβl
ℓit = OP (1),

1

NT

∑

i,t

{∂βkβl
ℓit − Eφ [∂βkβl

ℓit]} = oP (1),

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

NT

∑

i,t

∂βkβlβmℓit(β, πit) = OP (1).

(ii) Let k, l ∈ {1, 2, . . . , dimβ}. For ξit(β, φ) = ∂βkπℓit(β, πit) or ξit(β, φ) = ∂βkβlπℓit(β, πit),

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

T

∑

t

∣∣∣∣∣
1

N

∑

i

ξit(β, φ)

∣∣∣∣∣

q

= OP (1) ,

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

1

N

∑

i

∣∣∣∣∣
1

T

∑

t

ξit(β, φ)

∣∣∣∣∣

q

= OP (1) .

(iii) Let k, l ∈ {1, 2, . . . , dimβ}. For ξit(β, φ) = ∂πrℓit(β, πit), with r ∈ {3, 4}, or ξit(β, φ) = ∂βkπrℓit(β, πit),

with r ∈ {2, 3}, or ξit(β, φ) = ∂βkβlπ2ℓit(β, πit),

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

max
i

1

T

∑

t

|ξit(β, φ)| = OP

(
N2ǫ

)
,

sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

max
t

1

N

∑

i

|ξit(β, φ)| = OP

(
N2ǫ

)
.

(iv) Moreover,

1

T

∑

t

∣∣∣∣∣
1√
N

∑

i

∂πℓit

∣∣∣∣∣

q

= OP (1) ,
1

N

∑

i

∣∣∣∣∣
1√
T

∑

t

∂πℓit

∣∣∣∣∣

q

= OP (1) ,

1

T

∑

t

∣∣∣∣∣
1√
N

∑

i

∂βkπℓit − Eφ [∂βkπℓit]

∣∣∣∣∣

2

= OP (1) ,

1

N

∑

i

∣∣∣∣∣
1√
T

∑

t

∂βkπℓit − Eφ [∂βkπℓit]

∣∣∣∣∣

2

= OP (1) .

(v) The sequence {(ℓi1, . . . , ℓiT ) : 1 ≤ i ≤ N} is independent across i conditional on φ.

(vi) Let k ∈ {1, 2, . . . , dimβ}. For ξit = ∂πrℓit − Eφ [∂πrℓit], with r ∈ {2, 3}, or ξit = ∂βkπ2ℓit −
Eφ

[
∂βkπ2ℓit

]
, and some ν̃ > 0,

max
i

Eφ

[
ξ8+ν̃
it

]
≤ C, max

i
max

t

∑

s

Eφ [ξitξis] ≤ C, max
i

Eφ





[
1√
T

∑

t

ξit

]8
 ≤ C,

max
t

Eφ





[
1√
N

∑

i

ξit

]8
 ≤ C, max

i,j
Eφ





[
1√
T

∑

t

[ξitξjt − Eφ (ξitξjt)]

]4
 ≤ C,

uniformly in N, T , where C > 0 is a constant.
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(vii)
∥∥∥H−1

∥∥∥
q
= OP (1).

Then, Assumptions B.1(v) and (vi) are satisfied with the same parameters q, ǫ, rβ = rβ,NT and rφ =

rφ,NT used here.

Proof of Lemma D.7. The penalty term (v′φ)2 is quadratic in φ and does not depend on β. This

term thus only enters ∂φL(β, φ) and ∂φφ′L(β, φ), but it does not effect any other partial derivative of

L(β, φ). Furthermore, the contribution of the penalty drops out of S = ∂φL(β0, φ0), because we impose

the normalization v′φ0 = 0. It also drops out of H̃, because it contributes the same to H and H. We can

therefore ignore the penalty term for the purpose of proving the lemma (but it is necessary to satisfy

the assumption
∥∥∥H−1

∥∥∥
q
= OP (1)).

# Assumption (i) implies that ‖∂βL‖ = OP (1), ‖∂ββ′L‖ = OP (
√
NT ),

∥∥∥∂ββ′L̃
∥∥∥ = oP (

√
NT ), and

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βββL(β, φ)‖ = OP

(√
NT

)
. Note that it does not matter which norms we use

here because dimβ is fixed.

# By Assumption (ii), ‖∂βφ′L‖q = OP

(
(NT )1/(2q)

)
and sup

β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφL(β, φ)‖q =

OP

(
(NT )1/(2q)

)
. For example, ∂βkαiL = 1√

NT

∑
t ∂βkπℓit and therefore

‖∂βkαL‖q =

(∑

i

∣∣∣∣∣
1√
NT

∑

t

∂βkπℓit

∣∣∣∣∣

q)1/q

= OP

(
N1/q

)
= OP

(
(NT )1/(2q)

)
.

Analogously, ‖∂βkγL‖q = OP

(
(NT )1/(2q)

)
, and therefore ‖∂βkφL‖q ≤ ‖∂βkαL‖q+‖∂βkγL‖q = OP

(
(NT )1/(2q)

)
.

This also implies that ‖∂βφ′L‖q = OP

(
(NT )1/(2q)

)
because dim β is fixed.

# By Assumption (iii), ‖∂φφφL‖q = OP ((NT )ǫ), ‖∂βφφL‖q = OP ((NT )
ǫ),

sup
β∈B(rβ ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂ββφφL(β, φ)‖q = OP ((NT )ǫ), sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂βφφφL(β, φ)‖q = OP ((NT )ǫ),

and sup
β∈B(rβ,β0)

sup
φ∈Bq(rφ,φ0)

‖∂φφφφL(β, φ)‖q = OP ((NT )ǫ). For example,

‖∂φφφL‖q ≤ ‖∂αααL‖q + ‖∂ααγL‖q + ‖∂αγαL‖q + ‖∂αγγL‖q
+ ‖∂γααL‖q + ‖∂γαγL‖q + ‖∂γγαL‖q + ‖∂γγγL‖q

≤ ‖∂πααL‖q + ‖∂πγγL‖q + 3 ‖∂παγL‖q + 3 ‖∂πγαL‖q
≤ ‖∂πααL‖∞ + ‖∂πγγL‖∞ + 3 ‖∂παγL‖1−1/q

∞ ‖∂πγαL‖1/q∞ + 3 ‖∂παγL‖1/q∞ ‖∂πγαL‖1−1/q
∞

=
1√
NT

[
max

i

∣∣∣∣∣
∑

t

∂π3ℓit

∣∣∣∣∣+max
t

∣∣∣∣∣
∑

i

∂π3ℓit

∣∣∣∣∣ + 3

(
max

i

∑

t

|∂π3ℓit|
)1−1/q(

max
t

∑

t

|∂π3ℓit|
)1/q

+ 3

(
max

i

∑

t

|∂π3ℓit|
)1/q(

max
t

∑

t

|∂π3ℓit|
)1−1/q ]

≤ 1√
NT

[
max

i

∑

t

|∂π3ℓit|+max
t

∑

i

|∂π3ℓit|+ 3

(
max

i

∑

t

|∂π3ℓit|
)1−1/q (

max
t

∑

t

|∂π3ℓit|
)1/q

+ 3

(
max

i

∑

t

|∂π3ℓit|
)1/q(

max
t

∑

t

|∂π3ℓit|
)1−1/q ]

= OP (N
2ǫ) = OP ((NT )

ǫ).
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Here, we use Lemma D.5 to bound the norms of the 3-tensors in terms of the norms of matrices,

e.g. ‖∂ααγL‖q ≤ ‖∂παγL‖q, because ∂αiαjγtL = 0 if i 6= j and ∂αiαiγtL = (NT )−1/2∂παiγt .
20 Then,

we use Lemma D.4 to bound q-norms in terms of ∞-norms, and then explicitly expressed those ∞-

norm in terms of the elements of the matrices. Finally, we use that |∑i ∂π3ℓit| ≤ ∑
i |∂π3ℓit| and

|∑t ∂π3ℓit| ≤
∑

t |∂π3ℓit|, and apply Assumption (iii).

# By Assumption (iv), ‖S‖q = OP

(
(NT )−1/4+1/(2q)

)
and

∥∥∥∂βφ′L̃
∥∥∥ = OP (1). For example,

‖S‖q =
1√
NT

(∑

i

∣∣∣∣∣
∑

t

∂πℓit

∣∣∣∣∣

q

+
∑

t

∣∣∣∣∣
∑

i

∂πℓit

∣∣∣∣∣

q)1/q

= OP

(
N−1/2+1/q

)
= OP

(
(NT )−1/4+1/(2q)

)
.

#By Assumption (v) and (vi), ‖H̃‖ = OP

(
(NT )−3/16

)
= oP

(
(NT )−1/8

)
and

∥∥∥∂βφφL̃
∥∥∥ = OP

(
(NT )−3/16

)
=

oP
(
(NT )−1/8

)
. We now show it ‖H̃‖. The proof for

∥∥∥∂βφφL̃
∥∥∥ is analogous.

By the triangle inequality,

‖H̃‖ = ‖∂φφ′L − Eφ [∂φφ′L]‖ ≤ ‖∂αα′L − Eφ [∂αα′L]‖+ ‖∂γγ′L − Eφ [∂γγ′L]‖+ 2 ‖∂αγ′L − Eφ [∂αγ′L]‖ .

Let ξit = ∂π2ℓit − Eφ [∂π2ℓit]. Since ∂αα′L is a diagonal matrix with diagonal entries 1√
NT

∑
t ξit,

‖∂αα′L − Eφ [∂αα′L]‖ = maxi
1√
NT

∑
t ξit, and therefore

Eφ ‖∂αα′L− Eφ [∂αα′L]‖8 = Eφ


max

i

(
1√
NT

∑

t

ξit

)8



≤ Eφ


∑

i

(
1√
NT

∑

t

ξit

)8

 ≤ CN

(
1√
N

)8

= OP (N
−3).

Thus, ‖∂αα′L − Eφ [∂αα′L]‖ = OP (N
−3/8). Analogously, ‖∂γγ′L − Eφ [∂γγ′L]‖ = OP (N

−3/8).

Let ξ be the N×T matrix with entries ξit. We now show that ξ satisfies all the regularity condition of

Lemma D.6 with eit = ξit. Independence across i is assumed. Furthermore, σ̄2
i = 1

T

∑T
t=1 Eφ(ξ

2
it) ≤ C1/4

so that 1
N

∑N
i=1

(
σ̄2
i

)4
= OP (1). For Ωts =

1
N

∑N
i=1 Eφ(ξitξis),

1

T
Tr(Ω4) ≤ ‖Ω‖4 ≤ ‖Ω‖4∞ =

(
max

t

∑

s

Eφ [ξitξis]

)4

≤ C = OP (1).

For ηij = 1√
T

∑T
t=1 [ξitξjt − Eφ(ξitξjt)] we assume Eφη

4
ij ≤ C, which implies 1

N

∑N
i=1 Eφ

(
η4ii
)
= OP (1)

and 1
N2

∑N
i,j=1 Eφ

(
η4ij
)
= OP (1). Then, Lemma D.6 gives ‖ξ‖ = OP (N

5/8). Note that ξ = 1√
NT

∂αγ′L−
Eφ [∂αγ′L] and therefore ‖∂αγ′L − Eφ [∂αγ′L]‖ = OP (N

−3/8). We conclude that ‖H̃‖ = OP (N
−3/8) =

OP

(
(NT )−3/16

)
.

# Moreover, for ξit = ∂π2ℓit − Eφ [∂π2ℓit]

Eφ‖H̃‖8+ν̃
∞ = Eφ

(
1√
NT

max
i

∑

t

|ξit|
)8+ν̃

= Eφ max
i

(
1√
NT

∑

t

|ξit|
)8+ν̃

≤ Eφ

∑

i

(
1√
NT

∑

t

|ξit|
)8+ν̃

≤ Eφ

∑

i

(
T√
NT

)8+ν̃
(

1

T

∑

t

|ξit|8+ν̃

)
= OP (N),

20With a slight abuse of notation we write ∂παγL for the N ×T matrix with entries (NT )−1/2∂π3ℓit = (NT )−1/2∂π3ℓit, and

analogously for ∂πααL, ∂πγγL, and ∂πγαL.
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and therefore ‖H̃‖∞ = oP (N
1/8). Thus, by Lemma D.4

‖H̃‖q ≤ ‖H̃‖2/q2 ‖H̃‖1−2/q
∞ = oP

(
N1/8[−6/q+(1−2/q)]

)
= oP

(
N−1/q+1/8

)
= oP (1),

where we use that q ≤ 8.

# Finally we show that
∥∥∥
∑dimφ

g,h=1 ∂φφgφh
L̃ [H−1S]g[H

−1S]h
∥∥∥ = oP

(
(NT )−1/4

)
. First,

∥∥∥∥∥∥

dimφ∑

g,h=1

∂φφgφh
L̃ [H−1S]g [H

−1S]h

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

dimφ∑

g,h=1

∂αφgφh
L̃ [H−1S]g[H

−1S]h

∥∥∥∥∥∥
+

∥∥∥∥∥∥

dimφ∑

g,h=1

∂γφgφh
L̃ [H−1S]g[H

−1S]h

∥∥∥∥∥∥
.

Let (v, w)′ := H−1S, where v is a N -vector and w is a T -vector. We assume
∥∥∥H−1

∥∥∥
q
= OP (1). By

Lemma B.5 this also implies
∥∥∥H−1

∥∥∥ = OP (1) and ‖S‖ = OP (1). Thus, ‖v‖ ≤
∥∥∥H−1

∥∥∥ ‖S‖ = OP (1),

‖w‖ ≤
∥∥∥H−1

∥∥∥ ‖S‖ = OP (1), ‖v‖∞ ≤ ‖v‖q ≤
∥∥∥H−1

∥∥∥
q
‖S‖q = OP

(
(NT )−1/4+1/(2q)

)
, ‖w‖∞ ≤ ‖w‖q ≤

∥∥∥H−1
∥∥∥
q
‖S‖q = OP

(
(NT )−1/4+1/(2q)

)
. Furthermore, by an analogous argument to the above proof for

‖H̃‖, Assumption (v) and (vi) imply that
∥∥∥∂παα′ L̃

∥∥∥ = OP (N
−3/8),

∥∥∥∂παγ′ L̃
∥∥∥ = OP (N

−3/8),
∥∥∥∂πγγ′L̃

∥∥∥ =

OP (N
−3/8). Then,

dimφ∑

g,h=1

∂αiφgφh
L̃ [H−1S]g[H

−1S]h =

N∑

j,k=1

(∂αiαjαk
L̃)vjvk + 2

N∑

j=1

T∑

t=1

(∂αiαjγt L̃)vjwt +

T∑

t,s=1

(∂αiγtγsL̃)wtws

=
N∑

j=1

(∂π2αi
L̃)v2i + 2

T∑

t=1

(∂παiγt L̃)viwt +
T∑

t=1

(∂παiγtL̃)w2
t ,

and therefore
∥∥∥∥∥∥

dimφ∑

g,h=1

∂αφgφh
L̃ [H−1S]g[H−1S]h

∥∥∥∥∥∥
≤
∥∥∥∂παα′ L̃

∥∥∥ ‖v‖‖v‖∞ + 2
∥∥∥∂παγ′L̃

∥∥∥ ‖w‖‖v‖∞ +
∥∥∥∂παγ′ L̃

∥∥∥ ‖w‖‖w‖∞

= OP (N
−3/8)OP

(
(NT )−1/4+1/(2q)

)
= OP

(
(NT )−1/4−3/16+1/(2q)

)
= oP

(
(NT )−1/4

)
,

where we use that q > 4. Analogously,
∥∥∥
∑dimφ

g,h=1 ∂γφgφh
L̃ [H−1S]g[H

−1S]h
∥∥∥ = oP

(
(NT )−1/4

)
and thus

also
∥∥∥
∑dimφ

g,h=1 ∂φφgφh
L̃ [H−1S]g[H

−1S]h
∥∥∥ = oP

(
(NT )−1/4

)
.21 �

21Given the structure of this last part of the proof of Lemma D.7 one might wonder why, instead of∥∥∥
∑dimφ

g,h=1 ∂φφgφh
L̃ [H

−1
S ]g[H

−1
S ]h

∥∥∥ = oP
(
(NT )−1/4

)
, we did not directly impose

∑
g

∥∥∥∂φgφφ′L̃
∥∥∥ = oP

(
(NT )−1/(2q)

)
as

a high-level condition in Assumption B.1(vi). While this alternative high-level assumption would indeed be more elegant and

sufficient to derive our results, it would not be satisfied for panel models, because it involves bounding
∑

i

∥∥∥∂αiγγ
′ L̃

∥∥∥ and
∑

t

∥∥∥∂γtαα′ L̃
∥∥∥, which was avoided in the proof of Lemma D.7.

66



D.4 Properties of the Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

H = Eφ[−∂φφ′L] =
(

H∗
(αα) H∗

(αγ)

[H∗
(αγ)]

′ H∗
(γγ)

)
+

b√
NT

vv′,

where v = vNT = (1′N ,−1′T )
′, H∗

(αα) = diag( 1√
NT

∑
t Eφ[−∂π2ℓit]), H

∗
(αγ)it = 1√

NT
Eφ[−∂π2ℓit], and

H∗
(γγ) = diag( 1√

NT

∑
i Eφ[−∂π2ℓit]).

In panel models with only individual effects, it is straightforward to determine the order of magnitude

of H−1
in Assumption B.1(iv), because H contains only the diagonal matrix H∗

(αα). In our case, H is

no longer diagonal, but it has a special structure. The diagonal terms are of order 1, whereas the

off-diagonal terms are of order (NT )−1/2. Moreover,
∥∥∥H− diag(H∗

(αα),H
∗
(γγ))

∥∥∥
max

= OP ((NT )
−1/2).

These observations, however, are not sufficient to establish the order of H−1
because the number of

non-zero off-diagonal terms is of much larger order than the number of diagonal terms; compare O(NT )

to O(N+T ). Note also that the expected Hessian without penalty term H∗
has the same structure as H

itself, but is not even invertible, i.e. the observation on the relative size of diagonal vs. off-diagonal terms

is certainly not sufficient to make statements about the structure of H−1
. The result of the following

lemma is therefore not obvious. It shows that the diagonal terms of H also dominate in determining the

order of H−1
.

Lemma D.8. Under Assumptions 4.1,
∥∥∥∥H

−1 − diag
(
H∗

(αα),H
∗
(γγ)

)−1
∥∥∥∥
max

= OP

(
(NT )−1/2

)
.

This result establishes that H−1
can be uniformly approximated by a diagonal matrix, which

is given by the inverse of the diagonal terms of H without the penalty. The diagonal elements of

diag(H∗
(αα),H

∗
(γγ))

−1 are of order 1, i.e. the order of the difference established by the lemma is relatively

small.

Note that the choice of penalty in the objective function is important to obtain Lemma D.8. Different

penalties, corresponding to other normalizations (e.g. a penalty proportional to α2
1, corresponding to

the normalization α1 = 0), would fail to deliver Lemma D.8. However, these alternative choices do

not affect the estimators β̂ and δ̂, i.e. which normalization is used to compute β̂ and δ̂ in practice is

irrelevant (up to numerical precision errors).

D.4.1 Proof of Lemma D.8

The following Lemmas are useful to prove Lemma D.8. Let L∗(β, φ) = (NT )−1/2
∑

i,t ℓit(β, αi + γt).

Lemma D.9. If the statement of Lemma D.8 holds for some constant b > 0, then it holds for any

constant b > 0.

Proof of Lemma D.9. Write H = H∗
+ b√

NT
vv′, where H∗

= Eφ

[
− ∂2

∂φ∂φ′
L∗
]
. Since H∗

v = 0,

H−1
=
(
H∗)†

+

(
b√
NT

vv′
)†

=
(
H∗)†

+

√
NT

b‖vv′‖2 vv
′ =

(
H∗)†

+

√
NT

b(N + T )2
vv′,
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where † refers to the Moore-Penrose pseudo-inverse. Thus, if H1 is the expected Hessian for b = b1 > 0

and H2 is the expected Hessian for b = b2 > 0,
∥∥∥H−1

1 −H−1

2

∥∥∥
max

=
∥∥∥
(

1
b1

− 1
b2

) √
NT

(N+T )2 vv
′
∥∥∥
max

=

O
(
(NT )−1/2

)
. �

Lemma D.10. Let Assumption 4.1 hold and let 0 < b ≤ bmin

(
1 + max(N,T )

min(N,T )
bmax

bmin

)−1

. Then,

∥∥∥H−1

(αα)H(αγ)

∥∥∥
∞
< 1− b

bmax
, and

∥∥∥H−1

(γγ)H(γα)

∥∥∥
∞
< 1− b

bmax
.

Proof of Lemma D.10. Let hit = Eφ(−∂π2ℓit), and define

h̃it = hit − b− 1

b−1 +
∑

j (
∑

τ hjτ )
−1

∑

j

hjt − b∑
τ hjτ

.

By definition, H(αα) = H∗
(αα) + b1N1′N/

√
NT and H(αγ) = H∗

(αγ) − b1N1′T /
√
NT . The matrix H∗

(αα)

is diagonal with elements
∑

t hit/
√
NT . The matrix H∗

(αγ) has elements hit/
√
NT . The Woodbury

identity states that

H−1

(αα) = H∗−1

(αα) −H∗−1

(αα)1N

(√
NT b−1 + 1′NH∗−1

(αα)1N

)−1

1′NH∗−1

(αα).

Then, H−1

(αα) H(αγ) = H∗−1

(αα)H̃/
√
NT , where H̃ is the N × T matrix with elements h̃it. Therefore

∥∥∥H−1

(αα)H(αγ)

∥∥∥
∞

= max
i

∑
t

∣∣∣h̃it
∣∣∣

∑
t hit

.

Assumption 4.1(iv) guarantees that bmax ≥ hit ≥ bmin, which implies hjt − b ≥ bmin − b > 0, and

h̃it > hit − b− 1

b−1

∑

j

hjt − b∑
τ hjτ

≥ bmin − b

(
1 +

N

T

bmax

bmin

)
≥ 0.

We conclude that

∥∥∥H−1

(αα)H(αγ)

∥∥∥
∞

= max
i

∑
t h̃it∑
t hit

= 1−min
i

1∑
t hit

∑

t


b+ 1

b−1 +
∑

j (
∑

τ hjτ )
−1

∑

j

hjt − b∑
τ hjτ




< 1− b

bmax
.

Analogously,
∥∥∥H−1

(γγ)H(γα)

∥∥∥
∞
< 1− b

bmax
. �

Proof of Lemma D.8. We choose b < bmin

(
1 + max(κ2, κ−2) bmax

bmin

)−1

. Then, b ≤ bmin

(
1 + max(N,T )

min(N,T )
bmax

bmin

)−1

for large enough N and T , so that Lemma D.10 becomes applicable. The choice of b has no effect on

the general validity of the lemma for all b > 0 by Lemma D.9.

By the inversion formula for partitioned matrices,

H−1
=

(
A −AH(αγ)H

−1

(γγ)

−H−1

(γγ)H(γα)A H−1

(γγ) +H−1

(γγ)H(γα)AH(αγ) H
−1

(γγ)

)
,
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with A := (H(αα) −H(αγ)H
−1

(γγ)H(γα))
−1. The Woodbury identity states that

H−1

(αα) = H∗−1

(αα) −H∗−1

(αα)1N

(√
NT/b+ 1′NH∗−1

(αα)1N

)−1

1′NH∗−1

(αα)
︸ ︷︷ ︸

=:C(αα)

,

H−1

(γγ) = H∗−1

(γγ) −H∗−1

(γγ)1T

(√
NT/b+ 1′TH

∗−1

(γγ)1T

)−1

1′TH
∗−1

(γγ)
︸ ︷︷ ︸

=:C(γγ)

.

By Assumption 4.1(v), ‖H∗−1

(αα)‖∞ = OP (1), ‖H
∗−1

(γγ)‖∞ = OP (1), ‖H
∗
(αγ)‖max = OP (1/

√
NT ). There-

fore22

‖C(αα)‖max ≤ ‖H∗−1

(αα)‖2∞ ‖1N1′N‖max

(√
NT/b+ 1′NH∗−1

(αα)1N

)−1

= OP (1/
√
NT ),

‖H−1

(αα)‖∞ ≤ ‖H∗−1

(αα)‖∞ +N‖C(αα)‖max = OP (1).

Analogously, ‖C(γγ)‖max = OP (1/
√
NT ) and ‖H−1

(γγ)‖∞ = OP (1). Furthermore, ‖H(αγ)‖max ≤ ‖H∗
(αγ)‖max+

b/
√
NT = OP (1/

√
NT ). Define

B :=
(
1N −H−1

(αα)H(αγ)H
−1

(γγ)H(γα)

)−1

− 1N =
∞∑

n=1

(
H−1

(αα)H(αγ)H
−1

(γγ)H(γα)

)n
.

Then, A = H−1

(αα)+H−1

(αα)B = H∗−1

(αα)−C(αα)+H−1

(αα)B. By Lemma D.10, ‖H−1

(αα)H(αγ)H
−1

(γγ)H(γα)‖∞ ≤
‖H−1

(αα)H(αγ)‖∞‖H−1

(γγ)H(γα)‖∞ <
(
1− b

bmax

)2
< 1, and

‖B‖max ≤
∞∑

n=0

(
‖H−1

(αα)H(αγ)H
−1

(γγ)H(γα)‖∞
)n

‖H−1

(αα)‖∞‖H(αγ)‖∞‖H−1

(γγ)‖∞‖H(γα)‖max

≤
[ ∞∑

n=0

(
1− b

bmax

)2n
]
T ‖H−1

(αα)‖∞‖H−1

(γγ)‖∞‖H(γα)‖2max = OP (1/
√
NT ).

By the triangle inequality,

‖A‖∞ ≤ ‖H−1

(αα)‖∞ +N‖H−1

(αα)‖∞‖B‖max = OP (1).

Thus, for the different blocks of

H−1 −
(

H∗
(αα) 0

0 H∗
(γγ)

)−1

=

(
A−H∗−1

(αα) −AH(αγ) H
−1

(γγ)

−H−1

(γγ)H(γα)A H−1

(γγ)H(γα)AH(αγ) H
−1

(γγ) − C(γγ)

)
,

we find
∥∥∥A−H∗−1

(αα)

∥∥∥
max

=
∥∥∥H−1

(αα)B − C(αα)

∥∥∥
max

≤ ‖H−1

(αα)‖∞‖B‖max − ‖C(αα)‖max = OP (1/
√
NT ),

∥∥∥−AH(αγ) H
−1

(γγ)

∥∥∥
max

≤ ‖A‖∞‖H(αγ)‖max‖H
−1

(γγ)‖∞ = OP (1/
√
NT ),

∥∥∥H−1

(γγ)H(γα)AH(αγ) H
−1

(γγ) − C(γγ)

∥∥∥
max

≤ ‖H−1

(γγ)‖2∞‖H(γα)‖∞‖A‖∞‖H(αγ)‖max + ‖C(γγ)‖max

≤ N‖H−1

(γγ)‖2∞‖A‖∞‖H(αγ)‖2max + ‖C(γγ)‖max = OP (1/
√
NT ).

22 Here and in the following me make use of the inequalities ‖AB‖max < ‖A‖∞‖B‖max, ‖AB‖max < ‖A‖max‖B
′‖∞,

‖A‖∞ ≤ n‖A‖max, which hold for any m× n matrix A and n× p matrix B.
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The bound OP (1/
√
NT ) for the max-norm of each block of the matrix yields the same bound for the

max-norm of the matrix itself. �

D.5 A Useful Algebraic Result

Let P̃ be the linear operator defined in equation (C.3), and and let P be the related projection operator

defined in (C.2). Lemma D.11 shows how in the context of panel data models some expressions that

appear in the general expansion of Appendix B can be conveniently expressed using the operator P̃.

This lemma is used extensively in the proof of part (ii) of Theorem C.1.

Lemma D.11. Let A, B and C be N × T matrices, and let the expected incidental parameter Hessian

H be invertible. Define the N + T vectors A and B and the (N + T )× (N + T ) matrix C as follows23

A =
1

NT

(
A1T
A′1N

)
, B =

1

NT

(
B1T
B′1N

)
, C =

1

NT

(
diag (C1T ) C

C′ diag (C′1N )

)
.

Then,

(i) A′ H−1 B =
1√
NT

∑

i,t

(P̃A)itBit =
1√
NT

∑

i,t

(P̃B)itAit,

(ii) A′ H−1 B =
1√
NT

∑

i,t

Eφ(−∂π2ℓit)(P̃A)it(P̃B)it,

(iii) A′ H−1 C H−1 B =
∑

i,t

(P̃A)itCit(P̃B)it.

Proof. Let α̃∗
i + γ̃

∗
t = (PÃ)it = (P̃A)it, with Ã as defined in equation (C.3). The first order condition of

the minimization problem in the definition of (PÃ)it can be written as 1√
NT

H∗(α̃∗

γ̃∗

)
= A. One solution to

this equation is
(
α̃∗

γ̃∗

)
=

√
NT H−1A (this is the solution that imposes the normalization

∑
i α̃

∗
i =

∑
t γ̃

∗,

but this is of no importance in the following). Thus,

A′ H−1 B =

(
α̃∗

γ̃∗

)′
B =

1√
NT


∑

i,t

α̃∗
iBit +

∑

i,t

γ̃∗tBit


 =

1√
NT

∑

i,t

(P̃A)itBit.

This gives the first equality of Statement (i). The second equality of Statement (i) follows by symmetry.

Statement (ii) is a special case of of Statement (iii) with C = 1√
NT

H∗
, so we only need to prove

Statement (iii).

Let α∗
i + γ∗t = (PB̃)it = (P̃B)it, where B̃it = Bit

Eφ(−∂π2 ℓit)
. By an argument analogous to the one

given above, we can choose
(
α∗

γ∗

)
=

√
NT H−1B as one solution to the minimization problem. Then,

A′ H−1 C H−1 B =
∑

i,t

[α̃∗
iCitα

∗
i + α̃∗

iCitγ
∗
t + γ̃∗tCitα

∗
i + γ̃∗tCitγ

∗
t ] =

∑

i,t

(P̃A)itCit(P̃B)it.

�

23Note that A1T is simply the N-vectors with entries
∑

t Ait and A′1N is simply the T -vector with entries
∑

i Ait, and

analogously for B and C.
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 

MLE-FETE 13 12 17 0.88 0.76 1 8 8 0.93 0.93

Analytical 0 10 10 1.05 0.96 -1 8 8 0.95 0.95

Jackknife -7 11 13 0.89 0.85 0 9 9 0.80 0.88

MLE-FETE 8 8 11 0.93 0.81 0 6 6 0.94 0.95

Analytical 0 7 7 1.03 0.95 0 6 6 0.95 0.95

Jackknife -3 7 8 0.97 0.91 0 6 6 0.89 0.92

MLE-FETE 5 5 7 0.98 0.83 0 4 4 0.99 0.94

Analytical 0 5 5 1.05 0.96 0 4 4 0.99 0.94

Jackknife -1 5 5 0.99 0.95 0 4 4 0.94 0.93

 

MLE-FETE 12 9 15 0.93 0.74 0 5 5 1.06 0.97

Analytical -1 8 8 1.11 0.97 -1 5 5 1.08 0.97

Jackknife -7 9 11 0.94 0.84 -1 6 7 0.83 0.90

MLE-FETE 7 6 10 0.93 0.75 0 4 4 0.98 0.95

Analytical 0 6 6 1.03 0.96 0 4 4 0.99 0.95

Jackknife -2 6 6 1.00 0.92 0 4 4 0.90 0.93

MLE-FETE 5 4 6 1.00 0.79 0 2 2 1.07 0.96

Analytical 0 4 4 1.07 0.97 0 2 2 1.07 0.96

Jackknife 0 4 4 1.04 0.96 0 2 2 1.00 0.94

T = 52

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated 

from the probit model: Yit = 1(βXit + αi + γt > εit), with εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), γt ~ 

i.i.d. N(0, 1/16) and β = 1. In design 1, Xit = Xi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), and Xi0 ~ 

N(0,1). In design 2, Xit = Xi,t-1 / 2 + νit, νit ~ i.i.d. N(0, 3/4), and Xi0 ~ N(0,1), independent of αi y γt . 

Average effect is β E[φ(βXit + αi + γt)], where φ() is the PDF of the standard normal distribution. MLE-

FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the 

bias corrected estimator that uses an analytical correction; and Jackknife is the bias corrected estimator 

that uses split panel jackknife in both the individual and time dimension. 

T = 14

T = 26

T = 52

Design 2: uncorrelated individual and time effects

T = 14

Table 3: Finite sample properties of static probit estimators (N = 52)

Coefficient Average Effect

Design 1: correlated individual and time effects

T = 26
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 

MLE-FETE -44 30 53 0.96 0.67 -52 26 58 0.96 0.43

Analytical (L=1) -5 26 26 1.10 0.96 -6 27 28 0.90 0.91

Analytical (L=2) -4 28 28 1.03 0.95 -4 29 30 0.85 0.90

Jackknife 12 33 35 0.88 0.89 -4 33 33 0.76 0.85

MLE-FETE -23 21 30 0.98 0.79 -29 19 35 0.98 0.65

Analytical (L=1) -4 19 19 1.05 0.96 -3 20 20 0.96 0.94

Analytical (L=2) -1 20 20 1.02 0.96 -1 21 21 0.92 0.93

Jackknife 2 22 22 0.93 0.94 -1 23 23 0.85 0.91

MLE-FETE -9 14 17 0.99 0.90 -14 14 20 0.98 0.82

Analytical (L=1) -1 13 13 1.04 0.95 -1 14 14 0.97 0.94

Analytical (L=2) 0 14 14 1.02 0.95 1 15 15 0.96 0.94

Jackknife 1 14 14 0.98 0.94 0 15 15 0.91 0.92
 

MLE-FETE -38 28 47 0.94 0.66 -46 24 52 0.95 0.45

Analytical (L=1) -5 24 25 1.07 0.97 -6 25 26 0.91 0.92

Analytical (L=2) -4 26 26 1.01 0.95 -4 26 27 0.86 0.89

Jackknife 9 31 32 0.85 0.89 -3 31 31 0.75 0.84

MLE-FETE -19 19 27 0.97 0.80 -26 18 31 0.96 0.67

Analytical (L=1) -4 17 18 1.05 0.95 -4 18 18 0.95 0.93

Analytical (L=2) -2 18 18 1.02 0.95 -2 19 19 0.92 0.93

Jackknife 1 19 19 0.94 0.94 -1 20 20 0.84 0.90

MLE-FETE -8 13 15 0.98 0.90 -12 12 17 0.98 0.82

Analytical (L=1) -1 12 12 1.03 0.95 -1 12 13 0.98 0.94

Analytical (L=2) 0 12 12 1.01 0.94 0 13 13 0.96 0.94

Jackknife 0 13 13 0.98 0.95 0 13 13 0.93 0.92

Table 4: Finite sample properties of dynamic probit estimators (N = 52)

T = 52

Design 1: correlated individual and time effects

T = 52

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated from the 

probit model: Yit = 1(βYYi,t-1 + βZZit + αi + γt > εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. 

N(0,1/16), γt ~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 

1/2), and Zi0 ~ N(0,1). In design 2, Zit = Zi,t-1 / 2 + νit, νit ~ i.i.d. N(0, 3/4), and Zi0 ~ N(0,1), independent of αi y γt.  

Average effect is E[Φ(βY + βZZit + αi + γt) - Φ(βzZit + αi + γt)], where Φ() is the CDF of the standard normal 

distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical 

(L = l) is the bias corrected estimator that uses an analytical correction with l lags to estimate the spectral 

expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and 

time dimension. 

Design 2: uncorrelated individual and time effects

T = 14

T = 26

T = 14

Average Effect Yi,t-1

T = 26

Coefficient Yi,t-1
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

 

MLE-FETE 20 13 23 0.86 0.59 4 10 10 0.86 0.90

Analytical (L=1) 2 11 11 1.06 0.97 1 9 9 0.88 0.93

Analytical (L=2) 2 11 11 1.05 0.97 1 10 10 0.87 0.93

Jackknife -9 14 16 0.81 0.81 3 11 12 0.74 0.86

MLE-FETE 10 8 13 0.94 0.74 2 7 7 0.92 0.92

Analytical (L=1) 0 7 7 1.06 0.96 1 7 7 0.93 0.94

Analytical (L=2) 0 7 7 1.06 0.96 1 7 7 0.93 0.94

Jackknife -3 8 8 0.97 0.91 1 7 7 0.86 0.91

MLE-FETE 6 5 8 0.94 0.75 1 5 5 0.94 0.92

Analytical (L=1) 0 5 5 1.01 0.96 0 5 5 0.94 0.92

Analytical (L=2) 0 5 5 1.01 0.96 0 5 5 0.94 0.92

Jackknife -1 5 5 0.99 0.94 0 5 5 0.94 0.93
 

MLE-FETE 17 10 20 0.92 0.58 3 6 6 1.07 0.93

Analytical (L=1) 1 8 8 1.13 0.97 0 6 6 1.08 0.97

Analytical (L=2) 1 8 8 1.12 0.97 0 6 6 1.08 0.96

Jackknife -8 11 14 0.84 0.82 2 7 8 0.84 0.90

MLE-FETE 10 7 12 0.92 0.68 2 4 5 1.03 0.94

Analytical (L=1) 1 6 6 1.03 0.96 0 4 4 1.03 0.96

Analytical (L=2) 0 6 6 1.04 0.96 0 4 4 1.03 0.96

Jackknife -3 6 7 0.98 0.90 0 5 5 0.94 0.93

MLE-FETE 6 5 7 0.92 0.74 1 3 3 1.01 0.93

Analytical (L=1) 0 4 4 0.99 0.95 0 3 3 1.01 0.94

Analytical (L=2) 0 4 4 0.99 0.95 0 3 3 1.01 0.95

Jackknife -1 4 5 0.95 0.94 0 3 3 0.95 0.94

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  Data generated from the probit 

model: Yit = 1(βYYi,t-1 + βZZit + αi + γt > εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), 

γt ~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), and Zi0 ~ 

N(0,1). In design 2, Zit = Zi,t-1 / 2 + νit, νit ~ i.i.d. N(0, 3/4), and Zi0 ~ N(0,1), independent of αi y γt. Average effect is 

βZ E[φ(βYYi,t-1 + βZZit + αi + γt)], where φ() is the PDF of the standard normal distribution. MLE-FETE is the probit 

maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is the bias corrected estimator 

that uses an analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected 

estimator that uses split panel jackknife in both the individual and time dimension. 

Table 5: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Zit Average Effect Zit

Design 1: correlated individual and time effects

T = 14

T = 26

T = 52

Design 2: uncorrelated individual and time effects

T = 14

T = 26

T = 52
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

MLE -59 14 60 1.04 0.01 -58 14 60 1.03 0.01 222 113 248 1.15 0.60

MLE-TE -62 14 64 1.01 0.01 -62 14 64 1.01 0.01 -9 139 139 1.04 0.94

MLE-FETE -2 17 17 1.02 0.96 -2 17 17 1.02 0.96 -15 226 226 1.49 1.00

Analytical (L=1) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -9 225 225 1.50 1.00

Analytical (L=2) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -6 225 225 1.50 1.00

Jackknife -3 25 25 0.69 0.83 -3 25 25 0.70 0.83 -15 333 333 1.01 0.95

MLE -58 10 59 1.03 0.00 -57 10 58 1.03 0.00 226 81 240 0.98 0.20

MLE-TE -61 10 62 1.00 0.00 -61 10 62 1.00 0.00 -3 97 97 0.95 0.94

MLE-FETE 0 12 12 0.99 0.96 0 13 13 0.99 0.96 -6 158 158 1.12 0.98

Analytical (L=1) 0 12 12 0.99 0.96 0 13 13 0.99 0.96 0 159 158 1.11 0.98

Analytical (L=2) 1 13 13 0.99 0.96 1 13 13 0.99 0.96 3 159 159 1.11 0.98

Jackknife -1 14 14 0.90 0.93 -1 14 14 0.90 0.93 -15 208 208 0.85 0.90

MLE -58 8 58 1.00 0.00 -57 8 57 1.00 0.00 228 66 238 0.96 0.06

MLE-TE -61 8 61 1.00 0.00 -61 8 61 1.00 0.00 -1 77 77 0.95 0.94

MLE-FETE 0 10 10 0.97 0.94 0 11 11 0.97 0.94 -4 128 128 1.04 0.96

Analytical (L=1) 0 10 10 0.97 0.94 0 11 11 0.97 0.94 2 129 128 1.04 0.96

Analytical (L=2) 1 10 11 0.96 0.94 1 11 11 0.96 0.94 5 129 129 1.04 0.96

Jackknife 0 11 11 0.90 0.93 0 11 11 0.90 0.94 -12 169 170 0.79 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Yit ~ Poisson(exp{β1Xit + β2Xit
2
 + αi + γt}) with all 

the variables and coefficients calibrated to the dataset of ABBGH. Average effect is  E[(β1 + 2β2 Xit)exp(β1Xit + β2Xit
2
 + αi + γt)]. MLE is the Poisson maximum likelihood 

estimator without individual and time fixed effects; MLE-TE is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum 

likelihood estimator with individual and time fixed effects;Analytical (L = l) is the bias corrected estimator that uses an analytical correction with l lags to estimate the 

spectral expectations;  and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension. 

Table 6: Finite sample properties of static Poisson estimators

Coefficient Zit Average Effect Zit

N = 17, T = 22, unbalanced

N = 34, T = 22, unbalanced

N = 51, T = 22, unbalanced

Coefficient Zit
2
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

MLE 135 3 135 1.82 0.00 158 2 158 3.75 0.00

MLE-TE 142 3 142 1.95 0.00 163 3 163 4.17 0.00

MLE-FETE -17 15 23 0.96 0.78 -17 15 22 1.38 0.89

Analytical (L=1) -7 15 17 0.98 0.91 -8 14 16 1.41 0.97

Analytical (L=2) -5 15 16 0.96 0.92 -5 15 16 1.38 0.98

Jackknife 4 20 21 0.73 0.85 4 20 20 1.03 0.95

MLE 135 2 135 1.76 0.00 158 2 158 2.82 0.00

MLE-TE 141 2 141 1.77 0.00 162 2 162 2.69 0.00

MLE-FETE -16 11 19 0.93 0.65 -16 10 19 1.05 0.71

Analytical (L=1) -7 11 13 0.95 0.89 -7 10 12 1.08 0.92

Analytical (L=2) -4 11 12 0.93 0.91 -4 10 11 1.05 0.94

Jackknife 3 13 14 0.77 0.85 3 13 13 0.86 0.89

MLE 135 2 135 1.81 0.00 158 1 158 2.58 0.00

MLE-TE 141 2 141 1.79 0.00 162 2 162 2.41 0.00

MLE-FETE -15 8 17 0.97 0.55 -15 8 17 1.03 0.55

Analytical (L=1) -6 8 10 0.99 0.90 -6 8 10 1.05 0.91

Analytical (L=2) -3 8 9 0.97 0.93 -4 8 9 1.03 0.93

Jackknife 3 11 11 0.77 0.87 3 10 11 0.80 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  The data generating process is: 

Yit ~ Poisson(exp{βY log(1 + Yi,t-1) + β1Zit + β2Zit
2
 + αi + γt}), where all the exogenous variables, initial condition and 

coefficients are calibrated to the application of ABBGH.  Average effect is βY E[exp{((βY - 1)log(1 + Yi,t-1) + β1Zit + 

β2Zit
2
 + αi + γt}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE 

is the Poisson maximum likelihood estimator with time fixed effects;  MLE-FETE is the Poisson maximum likelihood 

estimator with individual and time fixed effects; Analytical (L = l) is the bias corrected estimator that uses an 

analytical correction with l lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator 

that uses split panel jackknife in both the individual and time dimension. 

Table 7: Finite sample properties of dynamic Poisson estimators

Coefficient Yi,t-1 Average Effect Yi,t-1

N = 17,T = 21, unbalanced

N = 34, T = 21, unbalanced

N = 51, T = 21, unbalanced
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Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

MLE -76 27 81 1.13 0.29 -76 27 80 1.13 0.30 760 351 837 1.65 0.89

MLE-TE -65 28 71 1.12 0.44 -65 29 71 1.12 0.45 541 356 647 1.75 0.99

MLE-FETE 9 40 41 0.95 0.92 9 41 42 0.95 0.92 -3 1151 1150 1.08 0.99

Analytical (L=1) 4 40 40 0.97 0.94 4 40 40 0.97 0.94 11 1117 1116 1.11 0.99

Analytical (L=2) 3 39 39 0.97 0.94 3 40 40 0.97 0.94 15 1110 1109 1.12 0.99

Jackknife 3 57 57 0.68 0.82 3 57 57 0.68 0.81 24 1653 1651 0.75 0.86

MLE -75 19 77 1.18 0.04 -74 19 77 1.18 0.05 777 252 817 1.47 0.42

MLE-TE -65 19 67 1.18 0.15 -64 19 67 1.18 0.15 534 248 589 1.65 0.88

MLE-FETE 6 28 28 0.97 0.94 6 28 29 0.97 0.94 -68 734 736 1.03 0.94

Analytical (L=1) 2 27 27 0.99 0.95 2 28 28 0.99 0.95 -51 713 714 1.06 0.95

Analytical (L=2) 0 27 27 0.99 0.95 0 27 27 1.00 0.95 -47 706 707 1.07 0.95

Jackknife 2 31 31 0.87 0.92 2 31 31 0.87 0.92 -38 1012 1012 0.74 0.85

MLE -74 15 76 1.17 0.00 -73 15 75 1.17 0.00 768 201 794 1.48 0.18

MLE-TE -63 16 65 1.15 0.05 -63 16 65 1.15 0.05 535 197 570 1.68 0.74

MLE-FETE 8 22 23 1.01 0.93 8 22 24 1.01 0.93 -27 606 606 0.99 0.95

Analytical (L=1) 4 21 22 1.02 0.95 4 22 22 1.02 0.95 -11 588 587 1.02 0.96

Analytical (L=2) 2 21 21 1.03 0.95 2 22 22 1.03 0.95 -5 581 580 1.03 0.96

Jackknife 3 25 25 0.89 0.91 4 25 25 0.89 0.91 8 838 837 0.71 0.83

Average Effect Zit

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  The data generating process is: Yit ~ Poisson(exp{βY log(1 + Yi,t-1) + β1Zit + β2Zit
2 

+ αi + γt}), where all the exogenous variables, initial condition and coefficients are calibrated to the application of ABBGH. Average effect is E[(β1 + 2β2Zit) exp{βYlog(1 

+ Yi,t-1) + β1Zit + β2Zit
2
 + αi + γt}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson maximum 

likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood estimator with individual and time fixed effects; Analytical (L = l) is the bias 

corrected estimator that uses an analytical correction with l lags to estimate the spectral expectations;  and Jackknife is the bias corrected estimator that uses split 

panel jackknife in both the individual and time dimension. 

Table 8: Finite sample properties of dynamic Poisson estimators

Coefficient Zit Coefficient Zit
2

N = 17, T = 21, unbalanced

N = 34, T = 21, unbalanced

N = 51, T = 21, unbalanced 76
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Table 9: Poisson model for patents

Static model
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Table 10: Homogeneity test for the jackknife

Cross section Time series

Static Model 10.49 13.37

(0.01) (0.00)

Dynamic Model 1.87 12.41

(0.60) (0.01)

Notes: Wald test for equality of common parameters across sub panels.

P-values in parentheses
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