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Abstract

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known
incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models
with both individual and time effects. Under asymptotic sequences where the time-dimension (7') grows
with the cross-sectional dimension (IV), the time effects introduce additional incidental parameter bias.
As the existing bias corrections apply to models with only individual effects, we derive the appropriate
corrections for the case when both effects are present. The basis for the corrections are general asymptotic
expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply the
expansions to conditional maximum likelihood estimators with concave objective functions in parameters
for panel models with additive individual and time effects. These estimators cover fixed effects estimators
of the most popular limited dependent variable models such as logit, probit, ordered probit, Tobit and
Poisson models. Our analysis therefore extends the use of large-T" bias adjustments to an important
class of models.

We also analyze the properties of fixed effects estimators of functions of the data, parameters and
individual and time effects including average partial effects. Here, we uncover that the incidental pa-
rameter bias is asymptotically of second order, because the rate of the convergence of the fixed effects
estimators is slower for average partial effects than for model parameters. The bias corrections are still
useful to improve finite-sample properties.
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1 Introduction

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known
incidental parameter problem (Neyman and Scott (I948)), Heckman (1981]), Lancaster (2000)), and Greene
(2004)). A recent literature, surveyed in Arellano and Hahn (2007) and including Phillips and Moon
(1999), Hahn and Kuersteiner (2002)), Lancaster (2002), Woutersen (2002), Hahn and Newey (2004),
Carro (2007), Arellano and Bonhomme (2009), Fernandez-Val (2009), Hahn and Kuersteiner (201T]),
Fernandez-Val and Vella (2011), and Kato, Galvao and Montes-Rojas (2012)), provides a range of so-
lutions, so-called large-T" bias corrections, to reduce the incidental parameter problem in long panels.
These papers derive the analytical expression of the bias (up to a certain order of the time dimension 7'),
which can be employed to adjust the biased fixed effects estimators. While the existing large-T" methods
cover a large class of models with individual effects, they do not apply to panel models with individual
and time effects. Time effects are important for economic modelling because they allow the researcher
to control for aggregate common shocks and to parsimoniously introduce dependence across individuals.

We develop analytical and jackknife bias corrections for nonlinear models with both individual and
time effects. To justify the corrections, we rely on asymptotic sequences where T grows with the
cross-sectional dimension N, as an approximation to the properties of the estimators in econometric
applications where T is moderately large relative to N. Examples include empirical applications that
use U.S. state or country level panel data, or trade flows across countries. Under these asymptotics,
the incidental parameter problem becomes a finite-sample bias problem in the time dimension and the
presence of time effects introduces additional bias in the cross sectional dimension. As the existing bias
corrections apply to models with only individual effects, we derive the appropriate correction.

In addition to model parameters, we provide bias corrections for average partial effects, which are
often the ultimate quantities of interest in nonlinear models. These effects are functions of the data,
parameters and individual and time effects in nonlinear models. The asymptotic distribution of the
fixed effects estimators of these quantities depends on the sampling properties of the individual and
time effects, unlike for model parameters. We find that in general the incidental parameters problem
for average effects is of second order asymptotically, because the rate of convergence of the fixed effect
estimator is slower for these effects than for model parameters. To the best of our knowledge, this rate
result is new for fixed effects estimators of average partial effects in nonlinear panel models with individual
and time effects The bias corrections, while not necessary to center the asymptotic distribution,
improve the finite-sample properties of the estimators specially in dynamic models.

The basis for the bias corrections are asymptotic expansions of fixed effects estimators with incidental
parameters in multiple dimensions. Bai (2009) and Moon and Weidner (2013a) 2013D) derive similar
expansions for least squares estimators of linear models with interactive individual and time effects. We
consider non-linear models with additive individual and time effects, which turns out to produce a similar
asymptotic bias pattern, but requires very different methods to derive the asymptotic expansions. In

our case, the nonlinearity of the model introduces nonseparability between the estimators of the model

!Galvao and Kato (2013) also found slow rates of convergence for fixed effects estimators in linear models with individual
effects under misspecification. Fernandez-Val and Lee (2013) pointed out this issue in nonlinear models with only individual

effects.



parameters and incidental parameters (individual and time effects). Moreover, we need to deal with an
asymptotically infinite dimensional non-diagonal Hessian matrix for the incidental parameters.

We focus on conditional maximum likelihood estimators with concave objective functions in all
parameters and additive individual and time effects. Concavity greatly facilitates showing consistency
in our setting where the dimension of the parameter space grows with the sample size. The most
popular limited dependent variable models, including logit, probit, ordered probit, Tobit and Poisson
models have concave log-likelihood functions (Olsen (I978)), and Pratt (1981])). By additive effects, we
mean that the individual and time effects are additively separable in the conditional likelihood, i.e. the
individual effect «; and the time effect v enter the likelihood for the observation (i,¢) as «; + ;. This
is the most common specification for the individual and time effects in linear models and is a natural
specification in the nonlinear models that we consider. Our analysis therefore extends the use of large-T
bias adjustments to an important class of models.

Our corrections eliminate the leading term of the bias from the asymptotic expansions. Under
asymptotic sequences where N and 1" grow at the same rate, we find that this term has two components:
one of order O(T~!) coming from the estimation of the individual effects; and one of order O(N~1)
coming from the estimation of the time effects. We consider analytical methods similar to Hahn and
Newey (2004) and Hahn and Kuersteiner (2011]), and suitable modifications of the split panel jackknife
of Dhaene and Jochmans (2010)/4 However, the theory of the previous papers does not cover the
models that we consider, because, in addition to not allowing for time effects, they assume either
identical distribution or stationarity over time for the processes of the observed variables, conditional
on the unobserved effects. These assumptions are violated in our models due to the presence of the
time effects, so we need to adjust the asymptotic theory accordingly. The individual and time effects
introduce strong correlation in both dimensions of the panel. Conditional on the unobserved effects, we
impose cross-sectional independence and weak time-serial dependence, and we allow for heterogeneity
in both dimensions.

Simulation evidence indicates that our corrections improve the estimation and inference performance
of the fixed effects estimators of parameters and average effects. The analytical corrections dominate the
jackknife corrections in probit and Poisson models for sample sizes that are relevant for empirical practice.
We illustrate the corrections with an empirical application on the relationship between competition and
innovation using a panel of U.K. industries, following Aghion, Bloom, Blundell, Griffith and Howitt
(2005). We find that the inverted-U pattern relationship found by Aghion et al is robust to relaxing the
strict exogeneity assumption of competition with respect to the innovation process and to the inclusion
of innovation dynamics. We also uncover substantial state dependence in the innovation process.

The large-T" panel literature on models with individual and time effects is sparse. Regarding lin-
ear regression models, there is a literature on interactive fixed effects that includes some of the papers
mentioned above (e.g. Pesaran (2006]), Bai (2009), Moon and Weidner (2013a} [2013D)). Furthermore,
Hahn and Moon (2006) considered bias corrected fixed effects estimators in panel linear autoregressive
models with additive individual and time effects. Regarding non-linear models, there is independent and

contemporaneous work by Charbonneau (2012]), which extended the conditional fixed effects estimators

2A similar split panel jackknife bias correction method was outlined in Hu (2002).



to logit and Poisson models with exogenous regressors and additive individual and time effects. She
differences out the individual and time effects by conditioning on sufficient statistics. The conditional
approach completely eliminates the asymptotic bias coming from the estimation of the incidental pa-
rameters, but it does not permit estimation of average partial effects and has not been developed for
models with predetermined regressors. We instead consider estimators of model parameters and average
partial effects in nonlinear models with predetermined regressors. The two approaches can therefore be
considered as complementary.

In Section B, we introduce the model and fixed effects estimators. Section [B] describes the bias
corrections to deal with the incidental parameters problem and illustrates how the bias corrections work
through an example. Section Ml provides the asymptotic theory. Sections [Bl and [6] give Monte Carlo
and empirical results. We collect the proofs of all the results and additional technical details in the

Appendix.

2 Model and Estimators

2.1 Model

The data consist of N x T observations {(Y;, X/,)’ : 1 <i < N,1 <t < T}, for a scalar outcome variable
of interest Y;; and a vector of explanatory variables X;;. We assume that the outcome for individual ¢

at time t is generated by the sequential process:
}/it | Xf;o‘a’}/vﬂ ~ fY( | Xit;o‘iv'ytvﬂ)v (7’ = 17 7N7t = 17 "'7T)7

where X! = (X;1,...,Xit), a = (a1,...,an), vy = (71,-..,77), fy is a known probability function, and
[ is a finite dimensional parameter vector.

The variables «; and 7, are unobserved individual and time effects that in economic applications cap-
ture individual heterogeneity and aggregate shocks, respectively. The model is semiparametric because
we do not specify the distribution of these effects nor their relationship with the explanatory variables.
The conditional distribution fy represents the parametric part of the model. The vector X;; contains
predetermined variables with respect to Y;;. Note that X;; can include lags of Y;; to accommodate
dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary response model). Let Y;; be a binary outcome and F be a cumulative distribution
function, e.g. the standard normal or logistic distribution. We can model the conditional distribution of

Yi: using the single-index specification
fY(y | Xitu O‘iu/ytaﬁ) = F(X'L/tﬁ +a; + ’Yt)y[l - F(letﬁ +a; + ’Yt)]l_y7 Yy e {07 1}

Example 2 (Count response model). Let Y be a non-negative interger-valued outcome, and f(-;\)
be the probability mass function of a Poisson random variable with mean A > 0. We can model the

conditional distribution of Yz using the single index specification

fY(y | Xituaia’ytuﬁ) = f(y7exp[letﬁ + a; +7t])7 ye {07 1727 }



For estimation, we adopt a fixed effects approach treating the realization of the unobserved in-
dividual and time effects as parameters to be estimated. We collect all these effects in the vector
onT = (a1,...;an, Y1, -, 77)’. The model parameter 8 usually includes regression coefficients of in-
terest, while the unobserved effects ¢y are treated as a nuisance parameter. The true values of the
parameters, denoted by 3° and ¢ = (a?,...,a%,7Y, ...,7%)’, are the solution to the population condi-
tional maximum likelihood problem

Eg[LnT (B, dnT)],

max
(B, nT)ERIM B+dim &N T

Lyr(B,énr) = (NT)™/2 8N “log fr (Yie | Xt iy, 8) = b(oyrdnr)® /2, (2.1)
it

for every N, T, where E4 denotes the expectation with respect to the distribution of the data conditional
on the unobserved effects and initial conditions including strictly exogenous variables, b > 0 is an
arbitrary constant, vnyr = (1%, —17)", and 15 and 17 denote vectors of ones with dimensions N and
T. Existence and uniqueness of the solution to the population problem will be guaranteed by our
assumptions in Section @ below, including concavity of the objective function in all parameters. The
second term of Ly is a penalty that imposes a normalization needed to identify ¢ny7 in models with
scalar individual and time effects that enter additively into the log-likelihood function as a; + ¥4 In
this case, adding a constant to all «;, while subtracting it from all +;, does not change a; + v:. To
eliminate this ambiguity, we normalize ¢%,, to satisfy vl ¢%p =0, ie. > . af = >, 7. The penalty
produces a maximizer of Ly that is automatically normalized. We could equivalently impose the
constraint viy¢n = 0 in the program, but for technical reasons we prefer to work with an unconstrained
optimization problem{{ The pre-factor (NT)~'/? in Ly7(B,¢nT) is just a convenient rescaling when
discussing the structure of the Hessian of the incidental parameters below.

Other quantities of interest involve averages over the data and unobserved effects

S = EANT (8%, 6%7)), Anr(B,énr) = (NT)™ Y A(Xir, B, 0, 1), (22)
it

where [E denotes the expectation with respect to the joint distribution of the data and the unobserved
effects, provided that the expectation exists. They are indexed by N and T because the marginal
distribution of {(X;;, s, y:) : 1 <i < N,1 <t < T} can be heterogeneous across i and/or t; see Section
These averages include average partial effects (APEs), which are often the ultimate quantities of
interest in nonlinear models. Some examples of partial effects, motivated by the numerical examples of
Sections B and [6], are the following:

3 In Appendix [B] we derive asymptotic expansions that apply to more general models. In order to use these expansions
to obtain the asymptotic distribution of the panel fixed effects estimators, we need to derive the properties of the expected
Hessian of the incidental parameters, a matrix with increasing dimension, and to show the consistency of the estimator of
the incidental parameter vector. The additive specification a; + v+ is useful to characterize the Hessian and we impose strict

concavity of the objective function to show the consistency.
4There are alternative normalizations for ¢~ such as a1 = 0. The normalization has no effect on the model parameter and

average partial effects. Our choice is very convenient for certain intermediate results that involve the incidental parameters ¢pnr,

their score vector and their Hessian matrix.



Example [ (Binary response model). If X;; , the kth element of X, is binary, its partial effect on
the conditional probability of Y;; is

A(Xit, By i, ve) = F(Br + Xy 1Bk + i +71) = F(Xj, _pBok + i +71), (2.3)

where By, is the kth element of B, and Xy _ and By include all elements of Xz and B except for the
kth element. If Xy i is continuous and F is differentiable, the partial effect of Xi 1, on the conditional
probability of Vi is

A(Xit, iy ve) = BOF (X0 B+ i + V), (2.4)

where OF is the derivative of F'.

Example [2] (Count response model). If X;; includes Z;; and some known transformation H(Z;) with

coefficients By, and B;, the partial effect of Zi on the conditional expectation of Yy is

A(Xit, B, i, ve) = [Bi + B;0H (Zi)] exp(X[, 8 + i + 7). (2.5)

2.2 Fixed effects estimators

We estimate the parameters by solving the sample analog of problem (21), i.e.

Lnt(B, ¢NT)- (2.6)

max
(B7¢NT)6]RdimB+dim ONT

As in the population case, we shall impose conditions guaranteeing that the solutions to the previ-
ous programs exist and are unique with probability approaching one as N and T become large. The
program (2.6) can be solved using standard optimization algorithms by imposing the normalization
VnrodnT = 0 directly on the log-likelihood instead of using the penalty. These algorithms have good
computational properties even when N and T are large under the concavity and differentiability as-
sumptions that we shall impose in the log-likelihood.

To analyze the statistical properties of the estimator of 8 it is convenient to first concentrate out the

nuisance parameter ¢ 7. For given 5, we define the optimal aNT (B) as

onT(B) = argmax  Lyr(B, dnr) - (2.7)

¢nTERIWENT

The fixed effects estimators of 4% and ¢, are

Byt = argmax Ly7(8, dnr(B)) onT = dnr(B). (2.8)
BERdiIm B

Estimators of APEs can be formed by plugging-in the estimators of the model parameters in the

sample version of ([22)), i.e.
ont = ANnT (B, ONT)- (2.9)



3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details to Section [l
We illustrate the analysis with numerical calculations based on a variation of the classical Neyman and

Scott (1948) variance example.

3.1 Incidental parameter problem

Fixed effects estimators in nonlinear or dynamic models suffer from the incidental parameter problem
(Neyman and Scott, 1948). The individual and time effects are incidental parameters that cause the
estimators of the model parameters to be inconsistent under asymptotic sequences where either N or T’

are fixed. To describe the problem let

Byr = argmax Eg [ACNT(BaaNT(B)) : (3.1)

Be]RdimB
In general, plim . By # 8% and plimy_,  Byr # B° because of the estimation error in aNT(B) when
one of the dimensions is fixed. If ¢ (8) is replaced by ¢n7(8) = argmaxy, , cgamonr Eg[LnT (B, ¢nT)],

then B y7 = 3°. We consider analytical and jackknife corrections for the bias 3, — 8°.

3.2 Bias Corrections

Some expansions can be used to explain our corrections. Under suitable sampling conditions, the bias
is small for large enough N and T, i.e., plimy 7, Byt = B°. For smooth likelihoods and under

appropriate regularity conditions, as N,T — oo,
el 0, BP -8 -1 -1
Byr =B +Bo/T+ D /N+op(T7" VN, (3.2)

for some Ffo and Efo that we characterize in Theorem 1] where a Vb := max(a, b). Unlike in nonlinear
models without incidental parameters, the order of the bias is higher than the inverse of the sample size
(NT)~! due to the slow rate of convergence of QZNT. Note also that by the properties of the maximum
likelihood estimator

V NT(B\NT — BNT) —d N(O,VOO)

2

Under asymptotic sequences where N/T — k* as N, T — oo, the fixed effects estimator is asymp-

totically biased because

VNT(Byr — 8°) = VNT(Bnr — Byp) + VNT(Bo /T + Do /N + op(T~H v N1
S N(B2 + w7 1D2 V). (3.3)

This is the large-N large-T" version of the incidental parameters problem that invalidates any inference
based on the asymptotic distribution. Relative to fixed effects estimators with only individual effects,
the presence of time effects introduces additional asymptotic bias through ﬁfo.

The analytical bias correction consists of removing estimates of the leading terms of the bias from
the fixed effect estimator of 3°. Let EJ%T and BJ%T be estimators of E’i and D"

[

respectively. The



bias corrected estimator can be formed as
By = Bnr — By /T — D5 /N
BNt = BNT ~r/ ~nr/N.
2 pp =P no P
If N/T — k%, By —p By, and Dy —p D, then
VNT(Biy = B°) —a N(0,Vo).

The analytical correction therefore centers the asymptotic distribution at the true value of the parameter,
without increasing asymptotic variance.

We consider a jackknife bias correction method that does not require explicit estimation of the bias,
but is computationally more intensive. This method is based on the split panel jackknife (SPJ) of Dhaene
and Jochmans (2010) applied to the two dimensions of the panel. Alternative jackknife corrections based
on the leave-one-observation-out panel jackknife (PJ) of Hahn and Newey (2004) and combinations of
PJ and SPJ are also possible. We do not consider corrections based on PJ because they are theoretically
justified by second-order expansions of 3 that are beyond the scope of this paper.

To describe our generalization of the SPJ, let E ~,1/2 be the average of the 2 split jackknife estimators
that leave out the first and second halves of the time periods, and let B ~N/2,7 be the average of the 2 split
jackknife estimators that leave out half of the individualsH In choosing the cross sectional division of the
panel, one might want to take into account individual clustering structures to preserve and account for
cross sectional dependencies. If there are no cross sectional dependencies, 5 N/2,7 can be constructed as
the average of the estimators obtained from alllgpossible partitions of N/2 individuals to avoid ambiguity

and arbitrariness in the choice of the division!d The bias corrected estimator is

EJ{/T = 3BNT - EN,T/Q - BN/2,T- (3.4)
To give some intuition about how the corrections works, note that
B — Bo = (Bnr — Bo) — (EN,T/Z — Bnr) — (EN/ZT — Bnr),

where By 15 — Bnr = Boo/T + 0p(T~1 vV N-1) and Byor — By = Do /N + op(T~1V N=1). The

time series split removes the bias term Ffo and the cross sectional split removes the bias term ﬁfo.

3.3 Illustrative Example

To illustrate how the bias corrections work in finite samples, we consider a simple model where the
solution to the population program (ZI]) has closed form. This model corresponds to the classical
Neyman and Scott (1948) variance example with individual and time effects, Y | o, v, 8 ~ N (a; +¢, B)-

It is well-know that in this case

Byt = (NT)™* Z (Yie —Yi =Y+ Y)Q )

it

When T is odd we define EN,T/Q as the average of the 2 split jackknife estimators that use overlapping subpanels with
t<(T+1)/2and t > (T +1)/2. We define BN/2,T similarly when N is odd.
5There are P = (1;) different cross sectional partitions with N/2 individuals. When N is large, we can approximate the

average over all possible partitions by the average over S < P randomly chosen partitions to speed up computation.



where V; =T 13, Y, Yy =N"13. Yy, and Y. = (NT)' Y, , Yir. Moreover,

2 > N-1)(T-1 1 1 1
ﬁNT:E(b[BNT]:BO%:BO ( >7
so that F’i =—3% and ﬁfo = _BOH

To form the analytical bias correction we can set EJBVT = —BNT and ﬁﬁ,T = —ENT. This yields
By = Byr(1+1/T + 1/N) with

A A 1 a0 1 1 1 1 1

Bnr =Eo[Bnr] =B <1_ﬁ_m_ﬁ+W+N2T .
This correction reduces the order of the bias from (T=*VN~1) to (T~2VN~2), and introduces additional
higher order terms. The analytical correction increases finite-sample variance because the factor (1 +
1/T +1/N) > 1. We compare the biases and standard deviations of the fixed effects estimator and the
corrected estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give
—=J aJ - - - 0 1
Byt = EolBnr] = 3Bnr — By 12— Bnjpr =6 (1 — ~T )

The correction therefore reduces the order of the bias from (Tt Vv N~1) to (TN)’lla

Table [I] presents numerical results for the bias and standard deviations of the fixed effects and bias
corrected estimators in finite samples. We consider panels with N, T € {10,25,50}, and only report
the results for 7' < N since all the expressions are symmetric in N and 7. All the numbers in the
table are in percentage of the true parameter value, so we do not need to specify the value of 5. We
find that the analytical and jackknife corrections offer substantial improvements over the fixed effects
estimator in terms of bias. The first and fourth row of the table show that the bias of the fixed effects
estimator is of the same order of magnitude as the standard deviation, where VNt = Var[ENT] =
2(N — 1)(T — 1)(8°)?/(NT)? under independence of Y;; over i and ¢ conditional on the unobserved
effects. The fifth row shows the increase in standard deviation due to analytical bias correction is small
compared to the bias reduction, where VﬁT = Var[ﬁj?,T] = (1+1/N +1/T)?V yr. The last row shows
that the jackknife yields less precise estimates than the analytical correction in small panels.

Table 2] illustrates the effect of the bias on the inference based on the asymptotic distribution. It
shows the coverage probabilities of 95% asymptotic confidence intervals for 5% constructed in the usual
way as

ClLos(B) = B+ 1.96V? = B(1 £ 1.961/2/(NT))

where 8 = {BNT, EJ@T} and Vyp = 232/(NT) is an estimator of the asymptotic variance V. /(NT) =
2(8%)2/(NT). T(i find the exact probabilities, we use that NTBy7/3° ~ X{n_1)r_1) and B, =
(1+1/N + 1/T)Bnr. These probabilities do not depend on the value of 3% because the limits of the

"Okui (2013) derives the bias of fixed effects estimators of autocovariances and autocorrelations in this model.
8 In this example it is possible to develop higher-order jackknife corrections that completely eliminate the bias because

we know the entire expansion of BNT. For example, E¢[4BNT — 2BN,T/2 — QEN/Q,T + BN/QVT/Q] = 8%, where BN/Q,T/Q is the
average of the four split jackknife estimators that leave out half of the individuals and the first or the second halves of the time

periods. See Dhaene and Jochmans (2010) for a discussion on higher-order bias corrections of panel fixed effects estimators.



Table 1: Biases and Standard Deviations for Yy | a, v, 8 ~ N (a; + v, )

N = 10 N=25 N=50

T=10 T=10 T=25 T=10 T=25 T=50

By —£°/8° 19  -14  -08 -12  -06  -.04
(Bar—B9/8° -03  -02 00 -0l -0l .00
(Bar — 6°/8°  -01 00 .00 .00 .00 .00
VVnr/B8° 13 .08 .05 .06 04 03
@/50 14 .09 .06 .06 .04 .03
\/VTNT/ﬁo A7 .10 .06 .07 .04 .03

Notes: VIJVT obtained by 50,000 simulations

intervals are proportional to 3 As a benchmark of comparison, we also consider confidence intervals
constructed from the unbiased estimator Sy = NTBnr/[(N — 1)(T — 1)]. Here we find that the

confidence intervals based on the fixed effect estimator display severe undercoverage for all the sample

sizes. The confidence intervals based on the corrected estimators have high coverage probabilities, which

approach the nominal level as the sample size grows. Moreover, the bias corrected estimator produces

confidence intervals with very similar coverage probabilities to the ones from the unbiased estimator.

Table 2: Coverage probabilities for Yy | a,v, 8 ~ N (a; + v, B)

N = 10 N=25 N=50
T=10 T=10 T=25 T=10 T=25 T=50
Clos(Byr) .56 55 65 44 63 .68
Clos(Bds) .89 92 93 92 .94 94
Clos(Bnr) 91 93 94 93 94 94

Nominal coverage probability is .95.

4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (3] generally does not have closed form solution,

so we need to rely on asymptotic arguments to characterize the terms in the expansion of the bias ([B2])

and to justify the validity of the corrections.

10



4.1 Asymptotic distribution of model parameters

We consider panel models with scalar individual and time effects that enter the likelihood function
additively through m;; = a;+7;. In these models the dimension of the incidental parameters is dim ¢y =
N+T. The leading cases are single index models, where the dependence of the likelihood function on the
parameters is through an index X/, + a; +7:. These models cover the probit and Poisson specifications
of Examples [I] and Moreover, the additive structure only applies to the unobserved effects, so we
can allow for scale parameters to cover the Tobit and negative binomial models. We focus on these
additive models for computational tractability and because we can establish the consistency of the fixed
effects estimators under a concavity assumption in the log-likelihood function with respect to all the
parameters.

The parametric part of our panel models takes the form

1ngY(}/it | X’itvaivﬁytaﬂ) = git(ﬂv ﬂ-'it)- (41)

We denote the derivatives of the log-likelihood function €;; by 95¢; (8, 7) := 0y (8, 7) /0B, Dpali(B,7) :=
0%0;1(B,m)/(0BOB), Onalis(B,7) := 0UH(B,7)/0n9, ¢ = 1,2,3, etc. We drop the arguments § and 7
when the derivatives are evaluated at the true parameters 8° and 7% := o + 9, e.g. Onaly =
Onalis(B°,7Y,). We also drop the dependence on NT from all the sequences of functions and parameters,
e.g. we use L for Ly and ¢ for ¢onr.

We make the following assumptions:

Assumption 4.1 (Panel models). Let v > 0 and u > 4(8 + v)/v. Let € > 0 and let B be a subset of
RY™A+L that contains an e-neighbourhood of (8°,7%,) for all i,t, N, T.

(i) Asymptotics: we consider limits of sequences where N/T — k%, 0 < k < 00, as N,T — oo.

(i) Sampling: conditional on ¢, {(Y1,XT) : 1 < i < N} is independent across i and, for each i,
{(Yit, Xit) : 1 <t < T} is a-mizing with mizing coefficients satisfying sup; a;(m) = O(m™") as
m — 0o, where

a;(m) := sup sup |P(An B) — P(A)P(B)|,
t AcA},BeB;,,,

and for Zy = (Y, Xit), Al is the sigma field generated by (Zy, Zit—1,...), and Bi is the sigma
field generated by (Zit, Zi g1, - - -)-

(iii) Model: for X! = {X;s: s =1,...,t}, we assume that for all i,t,N,T,

Yie | X7, 0,8 ~ expllin(B, o + 7))

The realizations of the parameters and unobserved effects that generate the observed data are de-

noted by B° and ¢°.

(iv) Smoothness and moments: We assume that (8, 7) — £;:(B,m) is four times continuously differen-
tiable over BY a.s. The partial derivatives of {;;(83,7) with respect to the elements of (B3,m) up to
fourth order are bounded in absolute value uniformly over (8,7) € B by a function M(Z;) > 0

a.s., and max; ; Ky[M (Z;)8%"] is a.s. uniformly bounded over N,T.
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(v) Concavity: For all N, T, (8,9) — L(B,¢) = (NT)fl/Q{ZM Lis(By i +v) — b(v'$)? )2} is strictly
concave over REMAHNAT 4 o Fyrthermore, there exist constants bmin and bmax such that for all
(B,7) € B2, 0 < bin < —Eg [0720i4 (B, )] < bmax a.s. uniformly over i, t, N,T.

Assumption ki) defines the large-T asymptotic framework and is the same as in Hahn and Kuer-
steiner (2011]). Assumption [L1[%¢) does not impose identical distribution nor stationarity over the time
series dimension, conditional on the unobserved effects, unlike most of the large-T panel literature, e.g.,
Hahn and Newey (2004) and Hahn and Kuersteiner (2011)). These assumptions are violated by the
presence of the time effects, because they are treated as parameters. The mixing condition is used to
bound covariances and moments in the application of laws of large numbers and central limit theorems
— it could replaced by other conditions that guarantee the applicability of these results.

Assumption FLI|(7i¢) is the parametric part of the panel model. We rely on this assumption to
guarantee that dgl;; and 0.¢;; have martingale difference properties. Moreover, we use certain Bartlett
identities implied by this assumption to simplify some expressions, but those simplifications are not
crucial for our results. Assumption [Iliv) imposes smoothness and moment conditions in the log-
likelihood function and its derivatives. These conditions guarantee that the higher-order stochastic
expansions of the fixed effect estimator that we use to characterize the asymptotic bias are well-defined,
and that the remainder terms of these expansions are bounded. The most commonly used nonlinear
models in applied economics such as logit, probit, ordered probit, Poisson, and Tobit models have smooth
log-likelihoods functions that satisfy the concavity condition of AssumptiondI[v), provided that all the
elements of X;; have cross sectional and time series variation. Assumption EEI(v) guarantees that 3°
and ¢° are the unique solution to the population problem (Z.1J), that is all the parameters are point
identified.

To describe the asymptotic distribution of the fixed effects estimator 3 , it is convenient to introduce
some additional notation. Let 7 be the (N +T') x (N +T') expected Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.

- H, H, b

H = E¢[—8¢¢/£] = ( _iaa)/ _gav) ) + — ’U’U/7 (42)
My Hemy /) VNT

where Hn,y = diag(Y, Eg[—0n2ly)) /\/NT,_?E*ME = _iEd,[—a,,z&i/j/lNT, and H(, =

diag(}; E¢[—0r2li])/V NT. Furthermore, let_z'll(aa)’_H(M)’ H(yay, and H,.,) denote the N x N,

N xT,Tx N and T x T blocks of the inverse H = of H. It is convenient to define the dim S-vector =

and the operator Dgrq by

N T
_ 1 ——1 —1 —1 =1
=it T ONT > (Hwa)ij T Hyays T Hamyir + H(w)tf) Es (Opnlir)
j=17=1
Dgﬂ-q&t = 857”6# — Opar1litZis, (4.3)

with ¢ = 0,1,2. The k-th component of =;; corresponds to the population least squares projection

of Ey(0,x4it)/Ep(Or2lit) on the space spanned by the incidental parameters under a metric given by

12



E¢(—8w2€it), i.e

= . . . ory : o ((Eo(Opintin) ’

itk = Qg + Yok (g, ) = 2?%?:2;1[3@5(_8#261& <m — ik — %,k) :
The operator Dgrq generalizes the individual and time differencing transformations from linear models to
nonlinear models. To see this, consider the normal linear model Yj; | X{, c;, ve ~ N(X[, 8+ i + v, 1).
Then, Zi = T 1300 Eg[Xa] + NPN  Bo[Xo] — (NT) 0 S0 B[ Xal, Dalin = —Xueu,
Dgnlis = —Xit, and Dgpalyy = 0, where e = Yiy — X/, — i — 7y and Xi = X, — Sy is the individual
and time demeaned explanatory variable.

Let E := plimy 7, - The following theorem establishes the asymptotic distribution of the fixed

effects estimator B .

Theorem 4.1 (Asymptotic distribution of 3) Suppose that Assumption [{.1] holds, that the following

limits exist

By =-E _i XN: Zthl Ef:t Eg (Orlit Dprlir) + % Zthl E¢(D6w2éit)]
L Z?fl E¢ (aﬂ'2£it)

— — Eg (0xlitDrlit + 1 Dgr2l;

Do — _E ZZ“ ¢ (OrlitDgxlin + 5Dp t)],
_T Ez 1 E¢ ( 71’2&15)

N T
— - 1
We =—E ﬁ Z ZE¢ 86,8’ it 871-2€ tuztuzt)‘| )

i=1 t=1
and that W > 0. Then,
VNT (B=8°) 4 W N(5Boo + K Do, Wee),

so that E'fo =WaoBs and ﬁfo =WoDoo in equation [B.2).

Sketch of the Proof. The detailed proof of Theorem [£1]is provided in the appendix. Here we include

a summary of the main ideas behind the proof.

We start by noting that the existing results for large N, T panels, which were developed for models
with only individual effects, cannot be sequentially applied to the two dimensions of the panel to derive
the asymptotic distribution of our estimators. These results usually start with a consistency proof that
relies on partitioning the log-likelihood in the sum of individual log-likelihoods that depend on a fixed
number of parameters, the model parameter 8 and the corresponding individual effect ;. Then, the
maximizers of the individual log-likelihood are shown to be consistent estimators of all the parameters
as T becomes large using standard arguments . In the presence of time effects there is no partition of
the data that is only affected by a fixed number of parameters, and whose size grows with the sample
size. We thus require a new approach.

Our approach consists of deriving an asymptotic approximation to the score of the profile log-
likelihood, Bﬂﬁ(ﬁ,aﬁ(ﬁ)), which is valid locally around 8 = 3°. We use this approximation to show
that there is a solution to the first order condition 85£(B,<$(B)) = 0 that is close to 3° asymptoti-

cally, and to characterize the asymptotic properties of this solution. Under the assumption that the
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log-likelihood is strictly concave, the solution to dzL(g, (E(B)) = 0 uniquely determines the maximizer
B, so that we do not need a separate proof of consistency to obtain the asymptotic distribution of our
estimators.

We derive the asymptotic approximation to 85£(B,<$(ﬂ)) using a second-order Taylor stochastic
expansion. This expansion does not rely on the panel structure of the model, but it requires sufficient
differentiability of £(8,#) and that each incidental parameter affects a subset (namely all observations
from individual i for each individual effect «y;, and all observations from time period ¢ for each time
effect ;) whose size grows with the sample size. For our panel model, the latter implies that the score

of the incidental parameters,

T
R e e .

S ﬁ, =0sL Bu =
(8,¢) s£(6,9) [\/% sz\il Oxlit (B, ;i + ) + \/%0’05}

is of a smaller order at the true parameters (8°, ¢°) than it is at other parameter values. The entries
of §(8,¢) are of order one generically as N and T grow at the same rate, while the entries of S :=
S(B°,¢%) are of order 1/v/N or 1/y/T. This allows us to bound the higher-order terms in a expansion
of 9gL(B, (;AS(ﬁ)) in § and S(B, ¢) around Sy and S.

The stochastic expansion of 9gL(3, #(3)) can be obtained in different ways. We find it convenient to
derive it through the Legendre-transformed objective function £*(8, S) = maxy [£(8, ¢) — ¢'S]. This
function has the properties: L£*(3, 0) = E(B,g(ﬁ)), LB, 8) = L(B,¢°) — ¢¥S, and 9L(B,¢°) =
0L* (B, S). The expansion of dL(S, b(B)) = 0L* (B, 0) can therefore be obtained as a Taylor stochas-
tic expansion of dgL*(3, S) in (3, S) around (3°,S) and evaluated at (3,0), see Appendix [Blfor details.

Theorem [B.] gives the stochastic expansion. To obtain the asymptotic distribution of B from the
expansion, we need to analyze the expected Hessian of the incidental parameters H, which is defined
in [@2) for our panel model. More precisely, we need to characterize the asymptotic properties of the
inverse of H, because this inverse features prominently in the expansion. For models with only individual
effects, H is diagonal and its inversion poses no difficulty. In our case H has strong diagonal elements

—1/2 The off-diagonal elements reflect that the

of order 1 and off-diagonal elements of order (NT)
individual and time effects are compounded in a non-trivial way. They are of smaller order than the
strong diagonal elements, but cannot simply be ignored in the inversion because the number of them is
very large and grows with the sample size. For example, the Hessian " without penalty has the same
structure as H, but is not invertible. Lemma [D.8 shows that # is invertible, and that ﬂ_l has the same
structure as H, namely strong diagonal elements of order 1 and off-diagonal elements of order (N T)_l/ 2,
This result explains why the double incidental parameter problem due to the individual and time effects
decouples asymptotically, so we get that the bias has two leading terms of orders T—! and N—!. This
result agrees with the intuition that one would draw from analyzing separately the incidental parameter
problem in each dimension, but without a formal derivation it was not clear that the asymptotic bias

also has the simple additive structure in the joint analysis. |

Remark 1 (Bias expressions for Conditional Moment Models). In the derivation of the asymptotic bias,

we apply Bartlett identities implied by Assumption [{.1|(iii) to simplify the expressions. The following
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expressions of the bias do not make use of these identities and therefore remain wvalid in conditional

moment settings that do not specify the entire conditional distribution of Yi:

B, = -E& [ Z Zt 1 —¢ B¢ (Oxlit Dgrlir)
i=1 Zt 1E¢( 7r2€it)

Llg| 2 i S Epl(0nlit)?) St Ep(Dpratic)
N 12
= (27 o (Omstin)]

o ii Y Ey [0x &tDﬁ,,&t]]
T t=1 ZfV1E¢( 2€zt)
Ll i SN Eg[(0nlit)?] o Eg(Dpralir)
2 T 2
= (2 Eo (0t

For example, consider the least squares fized effects estimator in a linear model Yiy = X[, 0+ a; + v + €4t

with Ele; | X!, ¢, 8] = 0. Applying the previous expressions to (B, 7) = —(Yie — X/, B— c; —v¢)? yields

and Do, = 0. The expression for Bo, corresponds to Nickell (1981) bias formula when X; = Y; —1. If
Eles | XTI, ¢,8] =0, i.e. Xy is strictly ezogenous with respect to i, then we get the well-known result

for linear models of no asymptotic bias, B = Doo = 0.

It is instructive to evaluate the expressions of the bias in our running examples.

Example [ (Binary response model). In this case
Cit(B,7) = Yirlog F(X},8 + m) + (1 — Yie) log[l — F(X}, 8 + 7)),

so that Oxly = Hy(Yi — Fit), 0gli = OnliuXit, On2lyy = —HyOFy + O0Hy(Yie — Fi), Opprla =
On2ly Xy XYy, Oprlis = On2liyXit, Onsly = —Hp0*Fy — 20H30F; + 0*Hy(Yie — Fy), and Ogr2ly =
Opaliy Xy, where Hy = OFy/[Fy(1 — Fy)],and Gy == 07G(Z )|Z:X£t60+7r?t for any function G and
j=0,1,2. Substituting these values in the expressions of the bias of Theorem [{.1] yields

N S {Eb[ Hip0? Fy Xie] + 2ZZ:t+1 Ey4 [Hit(yit - Fit)wirjfir] }

B = -E
oo T ,
2N Z Zt:l E¢ (wit)
N ~

Do = -E LZ Ei:l I%[Hita2EtXit]] 7

2T = im1 B (wit)

[ 1 X
WOO = E ﬁ Z ZE¢[wltXltX1t]1 )
=1 t=1

where w;; = H;;0F; and f(it 1s the residual of the population projection of X;;: on the space spanned

by the incidental parameters under a metric weighted by Ey(wy). For the probit model with all the
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components of Xy strictly exogenous,

B. = Z Zt 1 E¢ wtilth{t]l 8% D.. Z Zz 1 Egl wtiti ]
2N t 1 Eg (wit) 27 t=1 Zz 1 Eg (wit)

The asymptotic bias is therefore a positive definite matriz weighted average of the true parameter value

as in the case of the probit model with only individual effects (Ferndndez-Val, 2009).

Example [21 (Count response model). In this case
Lir(B, ) = (Xj, 8+ )Y — exp(X[, 8+ 7) — log Yz,

50 that Oxlyy = Yy — wit, Oplis = Oxliy Xit, On2liy = Onslyy = —wit, Opprliy = On2liy X X!y, and Oprliyy =
Opralyy = Bﬂa&tXit, where w;; = exp(XitﬁO + wit). Substituting these values in the expressions of the
bias of Theorem [{-1] yields

T
B . i 1 i Zt:l ZT t+1 Eq [(Y wzt)weriT}
N i=1 Zt:l E (wit) 7
o [ 1 N T
Woo = ﬁ Z ZE¢ wtiltX ]1
=1 t=1

and Do = 0, where X;; is the residual of the population projection of X on the space spanned by the
incidental parameters under a metric weighted by Eg(wi). If in addition all the components of X, are

strictly exogenous, then we get the no asymptotic bias result Boo = Doo = 0.

4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to the model parameters. These effects
are averages of the data, parameters and unobserved effects; see expression (Z2)). For the panel models
of Assumption Bl we specify the partial effects as A(Xyt, 8, i, ) = At (B, 7). The restriction that

the partial effects depend on «; and v through m;; is natural in our panel models since

E[Yie | XL, iy, ] = / yexpltan (8, mo)ldy,

and the partial effects are usually defined as differences or derivatives of this conditional expectation
with respect to the components of X;;. For example, the partial effects for the probit and Poisson models
described in Section [2] satisfy this restriction.

The distribution of the unobserved individual and time effects is not ancillary for the APEs, unlike for
model parameters. We therefore need to make assumptions on this distribution to define and interpret
the APEs, and to derive the asymptotic distribution of their estimators. Here, there are several possi-
bilities depending on whether we define the APE conditional or unconditional on the unobserved effects.
For conditional APEs, we treat the unobserved effects as deterministic. In this case E[A;] = Ey[Ay)]
and 6%y = (NT)™' 3,  Eg[Ay] can change over T and N in a deterministic fashion. For uncondi-
tional APEs, we control the heterogeneity of the partial effects assuming that the individual effects

and explanatory variables are identically distributed cross sectionally and/or stationary over time. If
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(Xit, i, 7y¢) is identically distributed over i and can be heterogeneously distributed over ¢, E[A;;] = 69
and 6%, = T71 Zthl 89 changes only with 7. If (X, au,7:) is stationary over ¢ and can be hetero-
geneously distributed over i, E[Ay] = 6Y and 6%, = N~! Eﬁl 89 changes only with N. Finally, if
(Xit, iy ve) is identically distributed over i and stationary over ¢, E[A;;] = 0% and 6% = 6° does not
change with N and 7.

We also impose smoothness and moment conditions on the function A that defines the partial effects.
We use these conditions to derive higher-order stochastic expansions for the fixed effect estimator of the
APEs and to bound the remainder terms in these expansions. Let {a;}n = {a; : 1 < i < N},
{vtr ={y:1<t<T}, and { Xy, a;, ve}nr = {(Xi, i, 1) : 1 <i < N, 1 <t <T}.

Assumption 4.2 (Partial effects). Let v >0, € > 0, and BY all be as in Assumption [}

(i) Sampling: for all N,T, (a) {c;}n and {y:}T are deterministic; or (b) {Xit, i, vt} N1 s identically

distributed across i and/or stationary across t.

(i) Model: for all i,t, N, T, the partial effects depend on «; and ~y; through o; + -
A(Xit, By i, 1t) = Die (B, i + ).

The realizations of the partial effects are denoted by Ay := Ay (B2, a9 +47).

(111) Smoothness and moments: The function (8, ) — A (8, ) is four times continuously differentiable
over B? a.s. The partial derivatives of Ay (B, ) with respect to the elements of (B,m) up to fourth
order are bounded in absolute value uniformly over (B,m) € BY by a function M(Z;) > 0 a.s., and

max; ¢t Eg[M(Z)3] is a.s. uniformly bounded over N, T.

(iv) Non-degeneracy and moments: 0 < min;;[E(A2) — E(Ai)?] < max;([E(A%) — E(A4)?] < oo,

uniformly over N, T.

Analogous to E;; in equation (3] we define

N T
1 ——1 —1 —1 ——1
\I/it = _ﬁ J:Zl ; (H(aa)ij + H(’ya)tj + ’H(a,y)“. + H(’Y’Y)t"') &TAjT, (44)

which is the population projection of Ox Az /Eg[0r2¢::] on the space spanned by the incidental parameters
under the metric given by Eg[—0:2¢;;]. We use analogous notation to the previous section for the
derivatives with respect to 8 and higher order derivatives with respect to 7.

Let 6%, and § be the APE and its fixed effects estimator, defined as in equations (Z2) and (29)
with A(Xj, 8, i, 1) = Au(B, i + *yt)H The following theorem establishes the asymptotic distribution
of 6.

-~

Theorem 4.2 (Asymptotic distribution of 0). Suppose that the assumptions of Theorem [{.1] and As-

9We keep the dependence of §%1 on NT to distinguish 6% from 6° = limy, 700 O3

17



sumption[{.9 hold, and that the following limits exist:

N T
I —| 1
(DﬁA)oo =E W Z ZEd)(aﬁAzt - Eitaﬂ'Ait)‘| )
i=1 t=1
5 D) W B + Z ST ST By (002l U,
=1 Zt 1 E¢ (Or2lit)
B Z Sy [Bp (02 Air) — B (Dnali) B (W)
2N Zt 1 Ep (Or2lit)
—s

Z Zz 1 E¢7 8 éltaﬂ'zgltlplt)
t 1 Ez lECb( 2€Zt)
1 3 Yo [By(Or2Air) = Eg (0rs Li) Eg (Vi)
t=1 sz\;l E¢ (&ﬂéit)

/

s | 2 N T N T N T
Vee =E{ 3572E (ZZAZ-,&) (ZZ%) +) > rar | g,

i=1 t=1

Do, = (DsA) W Do +E

)

for some deterministic sequence rNT — 00 such that ryr = O(WNT) and Vio > 0, where Eit =
Ait — E(Azt) and th = (DﬁA) W Dﬁglt — E¢( it)aﬂ-éit. Then,

~ =5 —5 —6
rN7(0 — 8% —T B, — N7'D_) —=qa N(0, V).
Remark 2 (Convergence rate, bias and variance). The rate of convergence ryr is determined by the in-

verse of the first term ofVio, which corresponds to the asymptotic variance of § :== (NT)~1 Zﬁl Z;‘ll Ajt,
-1
1 N T
2 _ Y
"NT = O W Z Z E[AztAjs]
i,j=1t,s=1
Assumption [{.4(iv) and the condition rnp — 0o ensure that we can apply a central limit theorem to 4.
Under Assumption[f9(i)(a), {Ait: 1 <i < N,1 <t <T} is independent across i and a-mizing across
t by Assumption[{.1|(i), so that rnT = VNT and
s .2 T o T
Voo = E{ NT Z E(AltA;T) + ZE(thF;t)‘| } .

N2T7?
t,r=1 t=1

i=1
Bias and variance are of the same order asymptotically under the asymptotic sequences of Assump-
tion[{1)(1). Under Assumption[{-9(i)(b), the rate of convergence depends on the sampling properties of

the unobserved effects. For example, if {a;}n and {v:}r are independent sequences, and «; and 7, are
independent for all i,t, then rne = /NT/(N +T — 1),

9 N T

—5 =] r

R DI EHEES 9 S LIRS S 1Y
=1

t,7=1 j#i t=1 =1

and the asymptotic bias is of order T—Y/2 4+ N~Y2. The bias and the last term ofVio are asymptotically

negligible in this case under the asymptotic sequences of Assumption [{1(i).
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Remark 3 (Average effects from bias corrected estimators). The first term in the expressions of the
-0 -9
biases B, and D, comes from the bias of the estimator of 5. It drops out when the APEs are constructed

from asymptotically unbiased or bias corrected estimators of the parameter (3, i.e.
= A(B, ¢(8)),

where B is such that \/NT(B— B =4 N(O,W;l). The asymptotic variance ofg is the same as in
Theorem [{-2

In the following examples we assume that the APEs are constructed from asymptotically unbiased

estimators of the model parameters.

Example I (Binary response model). Consider the partial effects defined in (Z:3) and (24) with
Air(B,m) = F(Br + Xy Bk +7) — F(X], 1Bk + ) and Nt (B,7) = BrOF (X8 + 7).

Using the notation previously introduced for this example, the components of the asymptotic bias ofg

are

S Eg(win)

N T T I, 2
Z S 2 B (Hit(Yie—Fit)wir Wiz ) —Eg (Vi) By (Hit 0 Fit)+E (9,2 Air)]
)

B[ Ly SN [FEs(Vit)Eg (Hn 0 Fyy) + Eqs(aﬂmm]]
2T t=1 Zi:l E¢ (Wit) ,

where \i/it is the residual of the population regression of —0xA;/Eglwii] on the space spanned by the inci-
dental parameters under the metric given by Eylwit]. If all the components of X are strictly exogenous,

the first term of B, is zero.

Example [2] (Count response model). Consider the partial effect

Ait (Bu 7T) = Git (ﬁ) exp(Xi/tﬁ + 7T)7

where g;; does not depend on w. For example, gi(8) = Br + Bih(Zy) in (23). Using the notation

previously introduced for this example, the components of the asymptotic bias are

B -F Z it Ermi B [(Yie — wit)wir i)
N i=1 Zt:1 Eg4 (Wit)

and ﬁio = 0, where g;z is the residual of the population projection of gy on the space spanned by
the incidental parameters under a metric weighted by Eylwy]. The asymptotic bias is zero if all the
components of X;z are strictly exogenous or g;t(B) is constant. The latter arises in the leading case of
the partial effect of the k-th component of Xy since git(8) = Br. This no asymptotic bias result applies

to any type of regressor, strictly erogenous or predetermined.

4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed effects estimators

of the model parameters and APEs can have biases of the same order as the variances under sequences
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where T grows at the same rate as N. This is the large-T version of the incidental parameters problem
that invalidates any inference based on the asymptotic distribution. In this section we describe how to
construct analytical bias corrections for panel models and give conditions for the asymptotic validity of
analytical and jackknife bias corrections.

The jackknife correction for the model parameter § in equation (3.4) is generic and applies to the

panel model. For the APEs, the jackknife correction is formed similarly as
O = 30N — gN,T/2 - SN/2,T,

where 5N7T /2 is the average of the 2 split jackknife estimators of the APE that leave out the first and
second halves of the time periods, and gN/2,T is the average of the 2 split jackknife estimators of the
APE that leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in Theorems [£.1]
and[£2] replacing the true values of 5 and ¢ by the fixed effects estimators. To describe these corrections,
we introduce some additional notation. For any function of the data, unobserved effects and parameters
9it; (B, i + v, 5 + + - j) with 0 < j < ¢, let gy = glt(ﬁ,al + A, @ + 7—;) denote the fixed effects
estimator, e.g., Ey [6,,2&,5] denotes the ﬁxed effects estimator of Ey[0,2¢;]. Let ’H H(av)’ H(va)’ and
7—[ 1 denote the blocks of the matrix 7~ , where

7Y)
e oy = ding(— Y, Bo[0n2Cir))/VNT, H, ) = ding(— Y, Eo[0nalir])/VNT, and H, ) = ~Egl02li) /VNT.
Let
- 1 XL _—
it =~ NT Zl Zl (H(aa)ij tHayy Hayir + H () tT) Eg (Oprlsr)
j=l71=

The k-th component of = Zit corresponds to a least squares regression of Eg @ Zt)/E¢( 20;¢) on the
space spanned by the incidental parameters weighted by Ey(—0x24:;).

The analytical bias corrected estimator of 59 is
p*=p-B/T - D/N,
where
L . T ;o T 29N
1 al Zj:o [T/(T - .7)] Zt:j+1 E¢ (8 éi t— jDﬁﬂ'éit) + % Zt:1 E¢(D6w2€it)
N i=1 Zt 1E¢ ( Or2lir)
ﬁ 1 i sz\il |:E¢7 (aﬂgitDﬁﬂ'git) + _Eqb (Dﬁﬂ-2€it):|
T t=1 Zz 1 Eqb ( 2611&)

and L is a trimming parameter for estimation of spectral expectations such that L — oo and L/T — 0

(Hahn and Kuersteiner, 2011). The factor T'/(T — j) is a degrees of freedom adjustment that rescales

the time series averages 7! ZtT: 1 by the number of observations instead of by T'. Unlike for variance
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estimation, we do not need to use a kernel function because the bias estimator does not need to be

positive. Asymptotic (1 — p)—confidence intervals for the components of 3% can be formed as

B+ 2 /WS /(NT), k={1,..,dim 3"},

where z1_, is the (1 — p)—quantile of the standard normal distribution, and /V[7k_kl is the (k, k)-element
of the matrix W~ with

N T
—-vn) ' Yy [E¢ Osplit) — B (0720200 - (4.5)
=1 t=1

The analytical bias corrected estimator of 6% is
64 =6—-B°/T - D°/N,
where & is the APE constructed from a bias corrected estimator of 8. Let

/\

N T
~ 1
Wir = = v/ Z Z (H(aa)w + H(w)tj + Hi (ay)ir T # w)tf) wBjr-
NT “—
j=171=1
The fixed effects estimators of the components of the asymptotic bias are

3o/ = DI 11 Bo (Onliam Dl
Sy Eg (On2lin)
S B (@ Bi) = B (00l Eg (V1)
=1 Zt 1E¢( Or2lir)
N: By (9nlirdra W) = 3B (02 Dit) + 3B (Do) Eg (Vi)
S By (0,200) |

The estimator of the asymptotic variance depends on the assumptions about the distribution of the

unobserved effects and explanatory variables. Under Assumption 2(i)(a) we need to impose an ho-
mogeneity assumption on the distribution of the explanatory variables to estimate the first term of the
asymptotic variance. For example, if {X;; : 1 <i < N,1 <t < T} is identically distributed over i, we

can form

~ r2
V6 = NZZVJ,I'?Q Z AZtAlT + ZE¢ ztl—‘zt 5 (46)

=1 Lt,7=1

for Ay = ﬁit — N1 Ezj\il ﬁit. Under Assumption 2(i)(b) and the independence assumption on the

unobserved effects of Remark 2]

T, T T
6 TNT A
vi= N2T2 Z itBir + Z Z ”Flt ’ (4.7)
—1 |t7=1 t=1 jti t=1
where Ay = Ay — N71 sz\il Ay under identical distribution over i, Ay = Ay — T—! Zt 1 Ay under

stationarity over t, and Ait = ﬁit — & under both. Note that we do not need to spec1fy the convergence
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rate to make inference because the standard errors \/% /rnT do not depend on ry7. Bias corrected
estimators and confidence intervals can be constructed in the same fashion as for the model parameter.

We use the following homogeneity assumption to show the validity of the jackknife corrections for
the model parameters and APEs. It ensures that the asymptotic bias is the same in all the partitions

of the panel. The analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional homogeneity). The sequence {(Yie, Xit, i, ) : 1 <i < N, 1<t <T}

1s identically distributed across i and strictly stationary across t, for each N,T.

This assumption might seem restrictive for dynamic models where X;; includes lags of the dependent
variable because in this case it restricts the unconditional distribution of the initial conditions of Yj;.
Note, however, that Assumption 4.3 allows the initial conditions to depend on the unobserved effects. In
other words, it does not impose that the initial conditions are generated from the stationary distribution
of Y;; conditional on X;; and ¢. Assumption rules out structural breaks in the processes for the
unobserved effects and observed variables. For APEs, it also imposes that these effects do not change
with T and N, i.e. 6% = &Y.

Remark 4 (Test of homogeneity). Assumption [{.3 is a sufficient condition for the validity of the
jackknife corrections. The weaker condition that the asymptotic biases are the same in all the partitions
of the panel can be tested using the Chow-type test recently proposed in Dhaene and Jochmans (2017)).
We provide examples of the application of this test to our setting in Section [Q.

The following theorems are the main result of this section. They show that the analytical and jack-
knife bias corrections eliminate the bias from the asymptotic distribution of the fixed effects estimators of
the model parameters and APEs without increasing variance, and that the estimators of the asymptotic

variances are consistent.

-~

Theorem 4.3 (Bias corrections for ). Under the conditions of Theorems [{.1],
W —p Wa,
and, if L — oo and L/T — 0,
VNT(F* = 6°) =a N (0T,
Under the conditions of Theorems [{.1] and Assumption [].3
VNT(B = B°) —q N(0,TW ).

~

Theorem 4.4 (Bias corrections for §). Under the conditions of Theorems[{.1] and [{.3,

Vo 5p VO,
and, if L — oo and L/T — 0,
N (34 = 0%p) = N(0,V2,).
Under the conditions of Theorems [{1] and[{.2, and Assumption[{.3,
(87— 8%) =g N(0,V2).

Remark 5 (Rate of convergence). The rate of convergence rnt depends on the properties of the sampling

process for the explanatory variables and unobserved effects (see remark[3).
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5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model parameters
and APEs in static models with strictly exogenous regressors and dynamic models with predetermined
regressors such as lags of the dependent variable. We analyze the performance of uncorrected and bias-
corrected fixed effects estimators in terms of bias and inference accuracy of their asymptotic distribution.
In particular we compute the biases, standard deviations, and root mean squared errors of the estimators,
the ratio of average standard errors to the simulation standard deviations (SE/SD); and the empirical
coverages of confidence intervals with 95% nominal value (p; .95) E Overall, we find that the analytically
corrected estimators dominate the uncorrected and jackknife corrected estimators. All the results are

based on 500 replications.

5.1 Example [I: binary response models

The designs correspond to static and dynamic probit models. We consider panels with a cross sectional

size of 52 individuals, motivated by applications to U.S. states.

5.1.1 Static probit model

The data generating process is
Yi=1 {Xltﬁ + o+ > Eit}u (Z =1,.,N; t=1, ...,T),

where a; ~ N(0,1/16), v ~ N(0,1/16), e;x ~ N(0,1), and 8 = 1. We consider two alternative designs
for X;+: correlated and uncorrelated with the individual and time effects. In the first design, X;; =
Xit—1/24 o+ +vit, vy ~ N(0,1/2), and X;0 ~ N (0,1). In the second design, X;+ = X; 1—1/2 4+ vit,
vig ~ N(0,3/4), and X;90 ~ N(0,1). In both designs X;; is strictly exogenous with respect to
conditional to the individual and time effects, and has an unconditional variance equal to one. The
variables «;, ¢, €it, vit, and X, are independent and ¢.i.d. across individuals and time periods. We
generate panel data sets with NV = 52 individuals and three different numbers of time periods T 14, 26
and 52.

Table 3 reports the results for the probit coefficient 8, and the APE of X;;. We compute the APE
using (Z4). Throughout the table, MLE-FETE corresponds to the probit maximum likelihood estimator
with individual and time fixed effects, Analytical is the bias corrected estimator that uses the analytical
correction, and Jackknife is the bias corrected estimator that uses SPJ in both the individual and time
dimensions. The cross-sectional division in the jackknife follows the order of the observations. All the
results are reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the standard deviation for the uncorrected
estimator of the probit coefficient causing severe undercoverage of the confidence intervals. This result

holds for both designs and all the sample sizes considered. The bias corrections, specially Analytical,

0The standard errors are computed using the expressions @3], @8] and [@T) evaluated at uncorrected estimates of the

parameters.
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remove the bias without increasing dispersion, and produce substantial improvements in rmse and cov-
erage probabilities. For example, Analytical reduces rmse by more than 40 % and increases coverage by
20% in the correlated design with T = 14. As in Hahn and Newey (2004) and Fernandez-Val (2009),
we find very little bias in the uncorrected estimates of the APE, despite the large bias in the probit

coefficients.
5.1.2 Dynamic probit model
The data generating process is

Yie
Yio

1 {Y;,t—lﬁy + ZitBZ +Oéi +/7t > Eit}7 (l = 17 7N7 t= 17 "'7T)7
1{Zfz + i+ > ¢cio},

where «; ~ N(0,1/16), v ~ N(0,1/16), ez ~ N(0,1), By = 0.5, and 8z = 1. We consider two
alternative designs for Z;;: correlated an uncorrelated with the individual and time effects. In the first
design, Zyy = Z;1-1/2 + a; + 1 + vit, vie ~ N(0,1/2), and Z;o ~ N(0,1). In the second design,
Zit = Zit—1/2 + vit, vir ~ N(0,3/4), and Z;o ~ N(0,1). The unconditional variance of Z;; is one in
both designs. The variables «;, ¢, €it, vit, and Z;y are independent and i.i.d. across individuals and
time periods. We generate panel data sets with N = 52 individuals and three different numbers of time
periods T: 14, 26 and 52.

Table 4 reports the simulation results for the probit coefficient 8y and the APE of Y, ;. We
compute the partial effect of Y; ;—1 using the expression in equation (Z3)) with X, = Y;,—1. This
effect is commonly reported as a measure of state dependence for dynamic binary processes. Table 5
reports the simulation results for the estimators of the probit coefficient 8z and the APE of Z;. We
compute the partial effect using (2.4) with X, ,, = Z;;. Throughout the tables, we compare the same
estimators as for the static model. For the analytical correction we consider two versions, Analytical
(L=1) sets the trimming parameter to estimate spectral expectations L to one, whereas Analytical (L=2)
sets L to two. Again, all the results in the tables are reported in percentage of the true parameter value.

The results in table 4 show important biases toward zero for both the probit coefficient and the
APE of Y; ;1 in the two designs. This bias can indeed be substantially larger than the corresponding
standard deviation for short panels yielding coverage probabilities below 70% for T' = 14. The analytical
corrections significantly reduce biases and rmse, bring coverage probabilities close to their nominal
level, and have little sensitivity to the trimming parameter L. The jackknife corrections reduce bias
but increase dispersion, producing less drastic improvements in rmse and coverage than the analytical
corrections. The results for Z;; in table 5 are similar to the static probit model. There are significant
bias and undercoverage of confidence intervals for the coefficient, which are removed by the corrections,

whereas there are little bias and undercoverage in the APEs.

5.2 Example [2: count response models

The designs correspond to static and dynamic Poisson models with additive individual and time effects.
Motivated by the empirical example in next section, we calibrate all the parameters and exogenous
variables using the dataset from Aghion, Bloom, Blundell, Griffith and Howitt (2005) (ABBGH). They
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estimated the relationship between competition and innovation using an unbalanced panel dataset of 17

industries over the 22 years period 1973-1994. The dependent variable is number of patents.

5.2.1 Static Poisson model

The data generating process is
}/it | Z;Ivu Q, 7y~ ’P(eXP[ZitBI + ZZ‘,B? + (673 + ’715])7 (Z = 17 eeey N7 t= 17 "'7T)7

where P denotes the Poisson distribution. The variable Z;; is fixed to the values of the competition
variable in the dataset and all the parameters are set to the fixed effect estimates of the model. We
generate unbalanced panel data sets with 7' = 22 years and three different numbers of industries N: 17,
34, and 51. In the second (third) case, we double (triple) the cross-sectional size by merging two (three)
independent realizations of the panel.

Table 6 reports the simulation results for the coefficients 5; and P2, and the APE of Z;;. We com-
pute the APE using the expression (235) with H(Z;;) = Z2. Throughout the table, MLE corresponds
to the pooled Poisson maximum likelihood estimator (without individual and time effects), MLE-TE
corresponds to the Poisson estimator with only time effects, MLE-FETE corresponds to the Poisson
maximum likelihood estimator with individual and time fixed effects, Analytical (L=l) is the bias cor-
rected estimator that uses the analytical correction with L = [, and Jackknife is the bias corrected
estimator that uses SPJ in both the individual and time dimensions. The analytical corrections are
different from the uncorrected estimator because they do not use that the regressor Z;; is strictly ex-
ogenous. The cross-sectional division in the jackknife follows the order of the observations. The choice
of these estimators is motivated by the empirical analysis of ABBGH. All the results in the table are
reported in percentage of the true parameter value.

The results of the table agree with the no asymptotic bias result for the Poisson model with exogenous
regressors. Thus, the bias of MLE-FETE for the coefficients and APE is negligible relative to the
standard deviation and the coverage probabilities get close to the nominal level as N grows. The
analytical corrections preserve the performance of the estimators and have very little sensitivity to the
trimming parameter. The jackknife correction increases dispersion and rmse, specially for the small
cross-sectional size of the application. The estimators that do not control for individual effects are

clearly biased.

5.2.2 Dynamic Poisson model

The data generating process is
Y | Yit_l, Zt o,y ~ Plexp[By log(1+ Yiy—1) + Zubr + Z2B2 + i + 7)), (i=1,...,N;t=1,...T).

The competition variable Z;; and the initial condition for the number of patents Y;o are fixed to the
values in the dataset and all the parameters are set to the fixed effect estimates of the model. To generate
panels, we first impute values to the missing observations of Z;; using forward and backward predictions
from a panel AR(1) linear model with individual and time effects. We then draw panel data sets with

T = 21 years and three different numbers of industries N: 17, 34, and 51. As in the static model, we
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double (triple) the cross-sectional size by merging two (three) independent realizations of the panel. We
make the generated panels unbalanced by dropping the values corresponding to the missing observations
in the original dataset.

Table 7 reports the simulation results for the coefficient Bg/ and the APE of Y; ;1. The estimators
considered are the same as for the static Poisson model above. We compute the partial effect of Y; ;1
using (Z8) with Z;; =Y, -1, H(Zit) = log(1 + Z;t), and dropping the linear term. Table 8 reports the
simulation results for the coefficients 4 and 9, and the APE of Z;. We compute the partial effect
using (Z8) with H(Z;;) = Z%. Again, all the results in the tables are reported in percentage of the true
parameter value.

The results in table 7 show biases of the same order of magnitude as the standard deviation for
the fixed effects estimators of the coeflicient and APE of Y;; 1, which cause severe undercoverage
of confidence intervals. Note that in this case the rate of convergence for the estimator of the APE is
ryT = VNT, because the individual and time effects are hold fixed across the simulations. The analytical
corrections reduce bias by more than half without increasing dispersion, substantially reducing rmse and
bringing coverage probabilities closer to their nominal levels. The jackknife corrections reduce bias and
increase dispersion leading to lower improvements in rmse and coverage probability than the analytical
corrections. The results for the coefficient of Z;; in table 8 are similar to the static model. The results

for the APE of Z;; are imprecise, because the true value of the effect is close to zero.

6 Empirical Example

To illustrate the bias corrections with real data, we revisit the empirical application of Aghion, Bloom,
Blundell, Griffith and Howitt (2005) that estimated a count data model to analyze the relationship
between innovation and competition. They used an unbalanced panel of seventeen U.K. industries
followed over the 22 years between 1973 and 1994 The dependent variable, Yj;, is innovation as
measured by a citation-weighted number of patents, and the explanatory variable of interest, Z;;, is
competition as measured by one minus the Lerner index in the industry-year.

Following ABBGH we consider a quadratic static Poisson model with industry and year effects where
Yie | 2] ciy e ~ Plexp[Bi Ziv + B2 Ziy + i + 1),

for (i =1,...,17;t = 1973,...,1994), and extend the analysis to a dynamic Poisson model with industry

and year effects where
Yie | Y1, 2 iyt ~ PlexplBy log(1 + Yie—1) + B1Zit + B225; + i + 1)),

for (i =1,..,17;t = 1974, ...,1994). In the dynamic model we use the year 1973 as the initial condition
for Y;;.

Table 9 reports the results of the analysis. Columns (2) and (3) for the static model replicate
the empirical results of Table I in ABBGH (p. 708), adding estimates of the APEs. Columns (4)

1YWe assume that the observations are missing at random conditional on the explanatory variables and unobserved effects

and apply the corrections without change since the level of attrition is low in this application.
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and (5) report estimates of the analytical corrections that do not assume that competition is strictly
exogenous with L = 1 and L = 2, and column (6) reports estimates of the jackknife bias corrections
described in [B4]). Note that we do not need to report separate standard errors for the corrected
estimators, because the standard errors of the uncorrected estimators are consistent for the corrected
estimators under the asymptotic approximation that we consider Overall, the corrected estimates,
while numerically different from the uncorrected estimates in column (3), agree with the inverted-U
pattern in the relationship between innovation and competition found by ABBGH. The close similarity
between the uncorrected and bias corrected estimates gives some evidence in favor of the strict exogeneity
of competition with respect to the innovation process.

The results for the dynamic model show substantial positive state dependence in the innovation
process that is not explained by industry heterogeneity. Uncorrected fixed effects underestimates the
coefficient and APE of lag patents relative to the bias corrections, specially relative to the jackknife.
The pattern of the differences between the estimates is consistent with the biases that we find in the
numerical example in Table 7. Accounting for state dependence does not change the inverted-U pattern,
but flattens the relationship between innovation and competition.

Table IO implements Chow-type homogeneity tests for the validity of the jackknife corrections. These
tests compare the uncorrected fixed effects estimators of the common parameters within the elements of
the cross section and time series partitions of the panel. Under time homogeneity, the probability limit
of these estimators is the same, so that a standard Wald test can be applied based on the difference
of the estimators in the sub panels within the partition. For the static model, the test is rejected at
the 1% level in both the cross section and time series partitions. Since the cross sectional partition is
arbitrary, these rejection might be a signal of model misspecification. For the dynamic model, the test
is rejected at the 1% level in the time series partition, but it cannot be rejected at conventional levels in
the cross section partition. The rejection of the time homogeneity might explain the difference between

the jackknife and analytical corrections in the dynamic model.

7 Concluding remarks

In this paper we develop analytical and jackknife corrections for fixed effects estimators of model pa-
rameters and APEs in semi parametric nonlinear panel models with additive individual and time effects.
Our analysis applies to conditional maximum likelihood estimators with concave log-likelihood functions,
and therefore covers logit, probit, ordered probit, ordered logit, Poisson, negative binomial, and Tobit
estimators, which are the most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear models with interactive individual and
time effects (Chen, Ferndndez-Val, and Weidner (2013)). Another interesting avenue of future research
is to derive higher-order expansions for fixed effects estimators with individual and time effects. These
expansions are needed to justify theoretically the validity of alternative corrections based on the leave-

one-observation-out panel jackknife method of Hahn and Newey (2004).

12Tn numerical examples, we find very little gains in terms of the ratio SE/SD and coverage probabilities when we reestimate

the standard errors using bias corrected estimates.
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Appendix

A Notation and Choice of Norms

We write A’ for the transpose of a matrix or vector A. We use 1,, for the n x n identity matrix, and
1,, for the column vector of length n whose entries are all unity. For square n x n matrices B, C, we
use B > C (or B > C) to indicate that B — C is positive (semi) definite. We write wpal for “with
probability approaching one” and wrt for “with respect to”. All the limits are taken as N,T — oo
jointly.

As in the main text, we usually suppress the dependence on NT of all the sequences of functions

and parameters to lighten the notation, e.g. we write £ for Ly and ¢ for ¢np. Let

where 0, f denotes the partial derivative of f with respect to x, and additional subscripts denote higher-
order partial derivatives. We refer to the dim ¢-vector S(8, ¢) as the incidental parameter score, and to
the dim ¢ x dim ¢ matrix H(8, ¢) as the incidental parameter Hessian. We omit the arguments of the
functions when they are evaluated at the true parameter values (8%, ¢°), e.g. H = H(B%,¢°). We use
a bar to indicate expectations conditional on ¢, e.g. dsL = Ey[05L], and a tilde to denote variables in
deviations with respect to expectations, e.g. 852 = 0L — OsL.

We use the Euclidian norm ||.|| for vectors of dimension dim 3, and we use the norm induced by the
Euclidian norm for the corresponding matrices and tensors, which we also denote by ||.||. For matrices
of dimension dim 8 x dim 8 this induced norm is the spectral norm. The generalization of the spectral
norm to higher order tensors is straightforward, e.g. the induced norm of the dim 8 x dim 8 x dim

tensor of third partial derivatives of L(3,¢) wrt 3 is given by

dim 8

> u v O L8, 9)

k=1

Osss Ll (P, = max
10888L(B, D)l tuweram X iy
This choice of norm is immaterial for the asymptotic analysis because dim § is fixed with the sample
size.

In contrast, it is important what norms we choose for vectors of dimension dim ¢, and their corre-

sponding matrices and tensors, because dim ¢ is increasing with the sample size. For vectors of dimension

dim ¢ 1/q
léllq = <Z |¢g|q> )

g=1

dim ¢, we use the ¢;,-norm

where 2 < ¢ < oo The particular value ¢ = 8 will be chosen later We use the norms that are

induced by the f;,-norm for the corresponding matrices and tensors, e.g. the induced g-norm of the

13We use the letter ¢ instead of p to avoid confusion with the use of p for probability.
'The main reason not to choose ¢ = oo is the assumption |||, = op (1) below, which is used to guarantee that |||, is

of the same order as |[H |l If we assume |1 ||, = Op(1) directly instead of [[H ' |l; = Op(1), then we can set g = oco.
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dim ¢ x dim ¢ x dim ¢ tensor of third partial derivatives of L(8, ¢) wrt ¢ is

dim ¢
0w L(B,P)|| = max Ug Vh Opg, 0, LB, D) - Al
10600 L(8, D), tmerem o T o2y g;l 9 Vh 0p0,0, L(5, ) (A.1)

q

Note that in general the ordering of the indices of the tensor would matter in the definition of this norm,
with the first index having a special role. However, since partial derivatives like Jg,4,4,£(8, ¢) are fully
symmetric in the indices g, h, [, the ordering is not important in their case.
For mixed partial derivatives of L(8, ¢) wrt 5 and ¢, we use the norm that is induced by the Euclidian
norm on dim -vectors and the g-norm on dim ¢-indices, e.g.
150000 £08 DMy = e paim BE 1 ot} uemam s =1, ol =)

dim 8 dim ¢

SN ukviwg wh 05, pi00,0, LB, )| (A.2)

k,l=1g,h=1
g q

where we continue to use the notation ||.||4, even though this is a mixed norm.
Note that for w,z € R4™? and ¢ > 2,

jw'a] < Jlwllgllellg/q-1 < (dim @)@ ]|zl

Thus, whenever we bound a scalar product of vectors, matrices and tensors in terms of the above norms

we have to account for this additional factor (dim ¢)(¢=2/4. For example,

dim B dim¢

ST weviws znys 95, pi650,60 LB, 0)| < (dim ) 29| [lo] [wllg |z ]q [Ylly 1955506 L(8, DI,

k,l=1 f,g,h=1

For higher-order tensors, we use the notation 9y44L(8, ¢) inside the g-norm |.||; defined above, while
we rely on standard index and matrix notation for all other expressions involving those partial deriva-
tives, e.g. Oy, L(B, ¢) is a dim¢ x dim ¢ matrix for every g = 1,...,dim¢. Occasionally, e.g. in
Assumption [BIlvi) below, we use the Euclidian norm for dim ¢-vectors, and the spectral norm for
dim ¢ x dim ¢-matrices, denoted by ||.||, and defined as ||.||; with ¢ = 2. Moreover, we employ the
matrix infinity norm [|A4 = max; 3>, [A4;;[, and the matrix maximum norm |[All

max = Max;; [Az]

to characterize the properties of the inverse of the expected Hessian of the incidental parameters in

Section [D.41
For r > 0, we define the sets B(r, 3°) = {[3 1B =B < r}, and By(r, ¢°) = {gb: o —¢°lly < r},

which are closed balls of radius 7 around the true parameter values 8° and ¢°, respectively.

B Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile objective function, £(/3, 5(6)),
and for the fixed effects estimators of the parameters and APEs, B and 5. We do not employ the panel
structure of the model, nor the particular form of the objective function given in Section [l Instead, we

consider the estimation of an unspecified model based on a sample of size NI and a generic objective
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function £(8, ¢), which depends on the parameter of interest 8 and the incidental parameter ¢. The
estimators (E(ﬂ) and 3 are defined in @12) and 2.3).
We make the following high-level assumptions. These assumptions might appear somewhat abstract,

but will be justified by more primitive conditions in the context of panel models.

-~

Assumption B.1 (Regularity conditions for asymptotic expansion of ). Let ¢ > 4 and 0 < € <
1/8 —1/(2q). Letrg =rg N1 >0, 16 = 1o N7 > 0, with 75 = o [([NT)"Y2D=¢] and ry = o[(NT)~€].
We assume that

(i) lj/ijn\%—uz,O<a<oo.
(ii) (B,9) — L(B, ¢) is four times continuously differentiable in B(rg, 8°) x By(rs, ¢°), wpal.
(i) s [6(8) = 0| =or(ro)

BeB(rs,8°)

(iv) H > 0, and Hﬂ’lHq = 0p (1)

(v) For the g-norm defined in Appendiz[4],

ISlly = Op ((NT) 741G ) oL = Op(1), [#ll, = or(1),
1030 £1l, = Op (NT)H/ D), 1050 L1l = Op(VNT),  [|8s55L]l, = Op((NT)),
10596 LI, = Op (NT)),

and
sip  sup[9ss5L(5, 0)|| = Op (VNT)
BEB(rp,B°) By (ry,¢°)
s sup[|0L(8, 9), = Op ((NT)V D),
BEB(rp,B°) By (rs,¢°)
sup sup (966 L(B, )|, = Op (NT)°),
BEB(rp,B°) By (rs,¢°)
sup sup 96 L(B, @), = Op (NT)9),
ﬂEB(Tﬁvﬂo) ¢€BQ(T¢7¢O)
sup sup  [|9ppss L£(8, 9)ll, = Op (NT) ).
BEB(rs,°) d€B4(r4,¢°)
vi) For the spectral norm ||.|| = ||.||2,
;) For th )

17 =or (NT)7V%), |95 L|| = 0p(VNT), [|a00£]| = op ((NT)1/%),
HBWZH =0pr(1), dffb Osoyon LI SlyTH 'Sl = op ((NT)*/‘*) .

g,h=1

Let 0sL(8, qAS(ﬁ)) be the score of the profile objective function The following theorem is the main
result of this appendix.

5Note that %E(B, QAﬁ(,B)) = 93L(B, 5(6)) by the envelope theorem.
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Theorem B.1 (Asymptotic expansions of (E(ﬂ) and 93L(8, (E(ﬁ))) Let Assumption[Bl hold. Then

dim ¢
B(B) = 0° = H 'S+ H M 0pp L1(B — B°) + SH Y (oo, LIH ' SIHTS], + RO(B),

g=1

and
s L(B, $(B)) = U =W VNT(8 - 8°) + R(B),

where U = U© + UM | and

_ 1 _ . _

W =——= (0gp L+ [0 L] H ~[0s5L]),

m ( BB [ B¢ ] [ (o¥e] ])
v = 0L + [3ﬁ¢/2] ﬁ_ls,
dim ¢ )

=1 -1 ~=—1 — — 1 —=\ -1
U = (050 LI 'S = (050 DR AH S+5 Y (9606, L+ 050 LI (0005, L) (SIS,

g=1
The remainder terms of the expansions satisfy

(NT)1/2—1/(2q) HR¢(B)H
sup 1 =op(1

BN _ o
pesirs.m L+ VNTIG— 5]

sup =
peB(rp,p0) 1+ VNTI||B = 5

Remark 6. The result for 5(6) —¢% does not rely on Assumption[B(vi). Without this assumption we

can also show that

s LB, $(B)) = DsL + [Dppr £+ (I LYH ™ (0prsL)] (B — B°) + (Dpr LYHT'S
+ % > (9pro, £+ [050 LI H ™ [Dogrs, L£]) [HT'S],HT'S + Ru(B),
g

with Ry(B) satisfying the same bound as R(B). Thus, the spectral norm bounds in Assumption [BI vi)
for dim ¢-vectors, matrices and tensors are only used after separating expectations from deviations of
expectations for certain partial derivatives. Otherwise, the derivation of the bounds is purely based on

the g-norm for dim ¢-vectors, matrices and tensors.

The proofs are given in Section [B.Jl Theorem [B.I] characterizes asymptotic expansions for the
incidental parameter estimator and the score of the profile objective function in the incidental parameter
score S up to quadratic order. The theorem provides bounds on the the remainder terms R?(3) and
R(3), which make the expansions applicable to estimators of 8 that take values within a shrinking rs-
neighborhood of 3% wpal. Given such an rg-consistent estimator B that solves the first order condition
5L (B, 6(8))

expansion for 3. This gives rise to the following corollary of Theorem [Bl. Let W := lim N, T—00 w.

0, we can use the expansion of the profile objective score to obtain an asymptotic

-~

-~

Corollary B.2 (Asymptotic expansion of (). Let Assumption Bl be satisfied. In addition, let U =
Op(1), let W, exist with W, > 0, and let ||E— B = op(rg). Then

VNT(B - 8°) = WU + op(1).
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The following theorem states that for strictly concave objective functions no separate consistency

proof is required for (;AS(ﬁ) and for 3

Theorem B.3 (Consistency under Concavity). Let Assumption [B17), (ii), (iv), (v) and (vi) hold,
and let (B, $) — L(B, @) be strictly concave over (3, ¢) € RIMBHIMe a1, Assume furthermore that
(NT)~Y4+Y 2D = op(ry) and (NT)YDrg = op(ry). Then,

sup
BEB(rgs,B°)

9(8) = ") = op(re).

i.e. Assumption [B\iii) is satisfied. If, in addition, W exists with W, > 0, then ||B— B =
Op (NT)=/4).

In the application of Theorem [B.1Il to panel models, we focus on estimators with strictly concave
objective functions. By Theorem [B.3] we only need to check Assumption [BK:), (i¢), (iv), (v) and (vi),
as well as U = Op(1) and W, > 0, when we apply Corollary B.2] to derive the limiting distribution of
3. We give the proofs of Corollary and Theorem in Section [B.11

Expansion for Average Effects

We invoke the following high-level assumption, which is verified under more primitive conditions for

panel data models in the next section.

~

Assumption B.2 (Regularity conditions for asymptotic expansion of §). Let ¢, €, 7g and r4 be defined
as in Assumption[B.1l We assume that

i) (B,0) — A(B, @) is three times continuously differentiable in B(rg, 8°) x By(re, #°), wpal.
B q\"'¢
(ii) 054l = Op(1), 04, = Op (NT)Y/CO=1/2) |9454Al, = Op((NT)*"1/?), and

sup  sup (98, 9)| = Op (1),
BEB(rg,8°) pEBy(r¢,¢°)
s sup DA, B)ll, = Op ((NT)V/E071/2),
BEB(r5,8°) pEBG(re,¢°)
s sup[DassAB, 9, = Or ((NT)2).

BEB(rs,B°) $€By(r4,4°)
(iii) 058 = 0r(1), |0,A]| = Op (NT)1/2) , and 9558 = 0p (NT)=5/%).

The following result gives the asymptotic expansion for the estimator, 5 = A(ﬁ,g(ﬁ)), wrt § =
A(B°,¢°).
Theorem B.4 (Asymptotic expansion of ). Let Assumptions Bl and hold and let |3 — B°|| =
Op ((NT)fl/Q) =op (rg). Then

0= [aﬁ/z + (0 BYH 0spD)| B8+ U9 +UW +0p (1 /\/NT) ,
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where

U = (0, 8)H 'S,

UV = 0y AH 'S — (0, DVH HH 'S
dim ¢
+3SH 00w B+ Y [0sw0, D) [ (0,D)]
g=1
Remark 7. The expansion of the profile score g, L(5, g/b\(ﬂ)) in Theorem [B.1l is a special case of the
expansion in Theorem[B.]], for A(B,¢) = ﬁ@@kﬁ(ﬁ, @). Assumptions[BQ also exactly match with the
corresponding subset of Assumption Bl

1

H S.

g9

B.1 Proofs for Appendix [Bl (Asymptotic Expansions)

The following Lemma contains some statements that are not explicitly assumed in Assumptions [B.1]
but that are implied by it.
Lemma B.5. Let Assumptions B be satisfied. Then
(i) H(B, ) >0 for all B € B(rg, %) and ¢ € By(ry, ¢°) wpal,
swp - sw0a£(5, 9)]| = Or (VT

BEB(rp,B°) dEB,(ry

s sup [0 LB, 9|, = Op ((NT)VCD)
BEB(rg,B°) $€By(r4,6°)
sup sup  [|9ppsL(B, O)|, = Op (NT)),
BEB(rp,B%) pEBq(rg,¢°)
sup sup [0 L(B, D), = Op((NT)),
BEB(Tﬁ)BO) ¢EBQ(T¢)¢O)
sup sup ||H7H(B,9)]|, = Op(D).

ﬂEB(Tﬁvﬂo) ¢EBQ(T¢7¢ )

(ii) Moreover, ||S|| = Op (1), [|[H7]| = Op (1 HH H =0p(l H’H ! _71H = op (NT)~1/%),
ot = (= HH )| = op (NT)4) 11050 L] = Op ((NT)V4) , [9366L] = Op (NT)),
H293¢¢'¢95[H’1S]g =0p ((NT)’”““/(Q")“),andHZg%«wgﬁm%S]g = Op ((NT)~ /451 Gayte)

Proof of Lemma [B.5l # Part (i): Let v € R and w,u € R¥™?. By a Taylor expansion of
B o, L(B, @) around (5°,¢°)
Zug (0800, L(B, )] w

= ugr [3ﬁ¢/¢gﬁ+ > Bk = BR)0ss86, L(BB) = D (dn — 87) D60y, L(B, é)] w,
g k h
with (8, ) between (82, ¢°) and (8, $). Thus
10896 L(B, &), = sup  sup sup > ugt! (946, £(8, ¢)] w

loll=1 llullg=1 fwllg/q-n=1 "y

< 195061, +118 = 5] sup |0s800£(B. )| + 116~ I, sup |9s000£(3.9)] .
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where the supremum over (B , é) is necessary, because those parameters depend on v, w, u. By Assump-
tion [B.1], for large enough N and T,

sup sup  [|0pgsL(B, D), < 0sp0 L]l +15  sup sup  [[0spssL(B, D),
BEB(r,8°) $EB, (rg,0°) BEB(rs.3%) $EBy(rg,6°)
+7rs  sup sup  [|9spss L(B, ),

BeB(rs,B%) p€Bq(rs,6°)
=Op[(NT)  +rg(NT)  +ry(NT)]=Op ((NT)).

The proofs for the bounds on |935rL(5, ), 106 L(5, 8), and [9sssL(5, )|, are analogous.
Next, we show that H(f, ) is non-singular for all 3 € B(rg, 3°) and ¢ € B,(rs,¢") wpal. By a
Taylor expansion and Assumption [B] for large enough N and T,

sup sup || H(B,¢) = H|, <rp  sup sup 9546 L(5: D)
BEB(rg,8%) $€Bq(rg,0") BEB(rg,6°) $EB, (rg,0")
+7g  sup sup [|0pg0L(B, D), = op(1). (B.1)

BEB(rp,B°) $€B,(r4,¢°)

Define AH(3,6) = ~ H(3,). Then | AH(3, )], < [#H(3.6) ~ H, + |7

, and therefore
q

sup sup  [[AH(B, 9|, = or(1),
BEB(rs,B°) 9B, (r4,4°)

by Assumption [B:I] and equation (BI]).
For any square matrix with [|All; < 1, ||(1 — A)_luq < (1—||A]l,) ", see e.g. p.301 in Horn and
Johnson (1985). Then

_ — -1
sip swp [HNBe), = sw swp |[(H- AW )
BEB(rp,B°) pEBy(ry,4°) BEB(rg,B°) $€Bq(ry,8°) a
o _ —1
= sup sup ’7—[ 1(]1—AH(B,¢)H 1)
BEB(rp,p%) d€Bq(ry,¢°) q

1 -1

< ||H sup sup ‘(]l — AH(B, (b)ﬁ_l)

4 BeB(rp,B°) ¢€By(rey,¢°) q
< ﬂil sup sup (1— HAH(B,@gi1 )

a4 BeB(rp,B°) ¢€By(14,9°) q
<7 @-o0p1)t =0p1).

q

#Part (i7): By the properties of the ,-norm and Assumption [B.1[v),
IS = 118l2 < (dim ¢)! 214 S]q = Op(1).
Analogously,
103001 < (dim @)!/271/7 |05, ], = Op ((NT)/1).

By Lemma [D.4] ||ﬂ71||q/(q71) = ||ﬂ71||q because 7 is symmetric, and

[ =17, < VIR ool e =17 s = 0p (0. (B.2)
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Analogously,
0866 LIl < (0896 LIl, = Op (NT)),

> s 0, LH S,

g9

Z&m 6, LM,

q

< 10ss0 L1, |11, IS, = O ((NT)—1/4+1/(2q)+e) 7

> Opsro, LIH LS,

g

H Sl

q

H H ”S”q =0p ((NT)_1/4+1/(211)+6) '
q

Assumption [B.1] guarantees that HﬂilH H?—NLH < 1 wpal. Therefore,

-1

H—lzﬂ‘l(uﬁﬂ‘lf li =H A" HE A+ H Z —HH ).
s=0 s=2

<[ = (1

Note that Hﬂ_l Z?;(—ﬁﬁ_l)s

H )S, and therefore

7!
T ﬁ—l _g—lﬁﬁ—l < H H HHH -0 (NT)*1/4 :
o N = )
by Assumption [BI[vi) and equation (B.2).
The results for ||7-[—1|| and H’H‘l - ﬂ_lu follow immediately. ]

B.1.1 Legendre Transformed Objective Function

We consider the shrinking neighborhood B(rg, 8°) x By(rs, ¢°) of the true parameters (3°, ¢Y). State-
ment (i) of Lemma [B.5 implies that the objective function L£(3, ¢) is strictly concave in ¢ in this
shrinking neighborhood wpal. We define

L8, 8) = [£(8, ¢) — ¢S], ®(8, §) = argmax [L(B, ¢) — ¢S], (B.3)

P€EB, (T¢ #°) $€EB,(r4,¢°)

where 3 € B(rg, %) and S € RY™?. The function £*(3, S) is the Legendre transformation of the
objective function L£(8, ¢) in the incidental parameter ¢. We denote the parameter S as the dual
parameter to ¢, and L*(8, S) as the dual function to £(8, ¢). We only consider £*(3, S) and ®(j3, S)
for parameters 3 € B(rg, 8°) and S € S(B, B,(r4, ¢°)), where the optimal ¢ is defined by the first order

conditions, i.e. is not a boundary solution. We define the corresponding set of pairs (5, S) that is dual

to B(r,@,ﬁo) X Bq(r¢,¢0) by
SB,(8°,¢°) = {(8,8) € RM™FTIme . (3. ®(8, S)) € B(rg, B°) x By(ry,¢")} .

Assumption [B.I] guarantees that for 8 € B(rg, 8%) the domain S(3, By(r4, ¢°)) includes S = 0, the origin

of R1™ ¢ as an interior point, wpal, and that £*(3, S) is four times differentiable in a neighborhood
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of S = 0 (see Lemma below). The optimal ¢ = ®(3,5) in equation (B.3) satisfies the first order
condition S = S§(8, ¢). Thus, for given S, the functions ®(3,S) and S(B, ¢) are inverse to each other,
and the relationship between ¢ and its dual S is one-to-one. This is a consequence of strict concavity of
L(B, ¢) in the neighborhood of the true parameter value that we consider here One can show that
_oLx(B, S)
a8 ’

which shows the dual nature of the functions £(8, ¢) and £*(8, S). For S = 0 the optimization in (B.3)
is just over the objective function £(8, ), so that ®(8,0) = ¢(8) and L£*(3,0) = L(S, $(8)), the profile
objective function. We already introduced S = S(8°,¢°), i.e. at 3 = 89 the dual of ¢° is S, and vica

versa. We can write the profile objective function £(f3, (E(B)) = L*(5,0) as a Taylor series expansion of
L*(8, S) around (8, S) = (8%, S), namely

(8, 5) =

L(8.5(8)) = L7(8°,8) + (99 L)AG ~ A (0 L7)S + 3 A (Do LIAB+ ..

where A = 3 — 8%, and here and in the following we omit the arguments of £*(3,S) and of its partial
derivatives when they are evaluated at (3°,S). Analogously, we can obtain Taylor expansions for the
profile score 9sL(3, o(8)) = 0L*(3,0) and the estimated nuisance parameter b(8) = —0sL*(B,0) in
AB and S, see the proof of Theorem [B.I] below. Apart from combinatorial factors those expansions
feature the same coefficients as the expansion of £(S, gg(ﬂ)) itself. They are standard Taylor expansions
that can be truncated at a certain order, and the remainder term can be bounded by applying the mean
value theorem.

The functions £(8, ¢) and its dual £L*(8, S) are closely related. In particular, for given § their first
derivatives with respect to the second argument S(8, ¢) and ®(3, S) are inverse functions of each other.
We can therefore express partial derivatives of £*(8, S) in terms of partial derivatives of £(3, ¢). This
is done in Lemma[B.6l The norms [|9ssssL* (8, S)|l,, [19ssssL*(B, 5)||,» etc., are defined as in equation

(A1) and (A.2).

Lemma B.6. Let assumption Bl be satisfied.

(i) The function L*(B,S) is well-defined and is four times continuously differentiable in SB.(8°, ¢Y),
wpal.

16 Another consequence of strict concavity of £(8, ¢) is that the dual function £*(8, S) is strictly convex in S. The original

L(B, ¢) can be recovered from L*(3, S) by again performing a Legendre transformation, namely

LB, ¢) = min [L*(8,S)+¢'S] .

SeRdim ¢
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(ii) For L* = L*(3°,S),

8513* = —(250, (95£* = 8g£, 855/,6* = —(8¢¢/£)71 = 7‘[71, 8g5/ LF = —(85¢/£)H71,
O L™ = Oppr L+ (D LYH (O pL), Dssrs, L = ZH (Do, LYH L H 1) g,
Opssr L =M (0,0 LYH "+ H  (0p,000L)YH [H ™ 0p,0L]g,
g
85k515/£* = —(3ﬁkﬁz¢’ )H_l - (aﬁl¢’£)H_l(aﬁk¢¢"c)H_l - (aﬁk¢’£)7_[_l(aﬁl¢’¢‘c)%_l
- Z s LYH ™ (D, LYH ™ M 9p,6L],,
03518, L% = 03315, L+ Y (000 LYH (D, 6 LYH (0,6 L)[H " D3, L],
g

+ (08, LYH (0,00 LYH 09, L + (05,0 LYH " (0p, 00 L)YH ™ D3, L

+ (03,0 LYH (05,000 LYH " Ogp, L

+ (08816 LYH (01 3, L) + (08, 8,00 LYH (D 3, L) + (05,8, 00 LYH (D15, L),

and

05515, L7 =Y H " (Dpsrgs0. LYH (M )gr (M e
fie
+ 3ZH (D606 LYH ™ (Dpr 0, LYH ™ (H ™) gp (K™ e

Op5575,L" = ZH (s s LYH ™ (Do, LYH [H g
- Z H ™ (Opar 60, LYH ™ (Oprpr o LYH T H gn
- ZH (Do LYH ™ [H™H (g0 L)H  gn
- Z H (0006 LYH T (Dpar s LYH T H ™ gn[H ™ 95,0 L] 5
- ZH (v LYH ™ (D506 LYH T - gn[H ™ 9p,0L] 5
- ZH (Do LYH T HT (D 006 LYH ™ gn[H ™ 056 L]
—ZH (OB on LYH H gn

—ZH (Dot oy LYHH ™ gn[H ™ (05,6 L)] -
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(iii) Moreover,

sup [9ppsL (8, 8)| = Op ()12 @),
(8,5)€SB,(8°,49)
sup 1885 L*(8,9)[l, = Op ((NT)l/‘HE)
(8,5)€8B,.(8°,¢°)
sup 19555L* (8, S)Il, = O ((NT)I/(2q)+5)
(8,5)€SB,.(8°,4°)
Sup 108s5sL™(B,9)|l, = Op ((NT)l/(Qq)+26)

(B,8)ESB-(8°,4°)
sup [0ssssL*(B,5)]l, = Op ((NT)*) .
(B,8)€SB-(82,64)
Proof of Lemma [B.6l #Part (i): According to the definition (B3)), £*(3,5) = L(8,®(5,5)) —
®(8,5)'S, where (3, .5) solves the FOC, S(8,®(5,S5)) = 5, i.e. S(B,.) and ®(S,.) are inverse functions
for every 8. Taking the derivative of S(3, ®(5,S5)) =S wrt to both S and g yields

[0s2(B,5)1[055(8,2(5,5))]

]]‘7
[055(8,2(8,9))'1+ [052(8, 5)1105S(8, ®(8, 5))'] = 0.

(B.4)

By definition, S = S(8°,¢"). Therefore, ®(j3,S5) is the unique function that satisfies the boundary
condition ®(3°,S) = ¢° and the system of partial differential equations (PDE) in (B.4). Those PDE’s

can equivalently be written as

0s®(8,5)" = —[H(B,2(5,9))] ",
95®(B,S)" = [9pe L(B, D(B, SHIH(B, ®(B, )]~ (B.5)

This shows that ®(3,S) (and thus £*(8, S)) are well-defined in any neighborhood of (3, 5) = (3°,S) in
which H(8, ®(53,9)) is invertible (inverse function theorem). Lemma[B.5lshows that H(f, ¢) is invertible
in B(rg, B°) x By(re, #°), wpal. The inverse function theorem thus guarantee that ®(3, S) and £*(83, S)
are well-defined in SB,.(8°, #°). The partial derivatives of £L*(83,S) of up to fourth order can be expressed
as continuous transformations of the partial derivatives of L(3, ¢) up to fourth order (see e.g. proof of
part (i3) of the lemma). Hence, £*(8,S) is four times continuously differentiable because L£(f, ¢) is four

times continuously differentiable.

#Part (ii): Differentiating £L*(5,5) = L(8, ®(8,5)) — (5,S)'S wrt 5 and S and using the FOC of the
maximization over ¢ in the definition of £*(8, S) gives 93L*(8,S) = 0sL(B, ®(8,S)) and IsL*(5,S) =
—®(, S), respectively. Evaluating this expression at (3,5) = (8°,S) gives the first two statements of
part (ii).

Using dsL*(3,5) = —®(8, S), the PDE (B.A]) can be written as

aSS’E*(Bus) :H_l(ﬁ,fl)(ﬁ,S)),
6,35"6*(67 S) = —[6]@¢/£(ﬁ,(1)(ﬁ75))]%_1(6, (I)(Bv S))

Evaluating this expression at (8,59) = (8%, S) gives the next two statements of part (ii).
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Taking the derivative of 9gL*(5,S) = 0L(B, ®(B,S)) wrt to § and using the second equation of
(B5) gives the next statement when evaluated at (3, S) = (8°,S).

Taking the derivative of 9sg' L*(8,S) = —[0pp L(B, ®(B,5))]~* wrt to S, and using the first equation
of (B.5) gives the next statement when evaluated at (3, S) = (8°,S).

Taking the derivative of dss/L*(3,5) = —[0pe L(B,®(B,5))]" wrt to By and using the second

equation of (B gives

D557 L7 (B,5) = H™H(B, ) (08,66 L(B: D) HT (8, ¢)
+ Y HTB,0)[0s,0 6L (B, OIHT (B, O){H (B, 0)[05 6 L(B: )]} g, (B.6)

g

where ¢ = ®(f3,.9). This becomes the next statement when evaluated at (3, 5) = (8°,S).
We omit the proofs for 0s, 5,5 L*, 0, 5,sL*, Oss'5,5,L" and Jp, ss:5,L"* because they are analogous.

##Part (iii): We only show the result for [[0gssL*(8, 5)|,, the proof of the other statements is analogous.
By equation (B.6)

10555L* (B, S, < [[H B, D) 10560 L(B, D), + [H 7B, D[, 10000 L£(B, O)II, 1050 £(B, D),

where ¢ = ®(3,5). Then, by Lemma [B.H

sup 108ssL™(8,5)]|, < sup sup | |[H7H(B,0)|]] 19806 £(B D),
(B,5)ESB,.(8°,¢°) BeB(rs,8°) pEB, (T¢ @)

+ [H71B, D)1 10606£(8, ), 1955 £(B, O] ] O ((NT)/ 0.

To derive the rest of the bounds we can use that the expressions from part (i¢) hold not only for
(8°,S), but also for other values (83,.9), provided that (8, ®(3,S) is used as the argument on the rhs

expressions. |

B.1.2 Proofs of Theorem [B.1], Corollary [B.2], and Theorem [B.3|

Proof of Theorem [B.1l Part 1: Expansion of a(ﬁ) Let 8 = Bnr € B(B%15). A Taylor expan-
sion of dsL*(3,0) around (Y, S) gives
~ 1
¢(B) = —0sL*(B,0) = —0sL" — (055 L)AL + (055 L™)S — 3 Z(asS/sgﬁ*)SSg + R?(B),
g

where we first expand in 3 holding S = S fixed, and then expand in S. For any v € RY™ ¢ the remainder

term satisfies

VRY(B) = v { - %Z[asﬁ/ﬁkﬁ*(ﬁv5)](Aﬂ)(Aﬂk) + D 05575, L7 (8%, S)IS(AB)
k k

1 _
*5 gz,;[a”’sgshﬁ*wo, S)]SSgSh},

where 3 is between 8° and 3, and S and S are between 0 and S. By part (i) of Lemma [B.0]

B(B) = ° = H (Oppr L)AB+H 'S + 3H ™ (0pir9, LHT'S(HTS)y + R?(B).

g
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Using that the vector norm ||.|4/(g—1) is the dual to the vector norm |.||4, Assumption [B.I} and Lem-
mas and yields

HR‘b(ﬁ)Hq = sup VR?)
|| llg/(q-1)=1

< 5 |losasc 3.5)|| 12817 +[[0ssscr(8°. 3) | ISR + 5 sssst” (3.5, IS
= Op [(NT)Y# g | AB|| + (NT) 41/ 0¢| A (NT) =3/ 43/ Caree]
= op ((NT)71/201/C0) 4 op (NT)V @05 - 7)),

uniformly over 3 € B(3°,r5) by Lemma [B6l [ |

Proof of Theorem [B.1l Part 2: Expansion of profile score. Let 3 = By € B(8° r3). A Taylor
expansion of 93L*(3,0) around (8%, S) gives

5L (B, 0(8)) = L*(8,0) = D5L7 + (Ip5 L*)AB — (D1 L7)S + % Y (9ps15,L7)SS, + Ra(B),

g

where we first expand in 3 for fixed S = S, and then expand in S. For any v € RY™# the remainder

term satisfies

VRi(B) = {% > 085 L7 (5, S(AB)(ABK) = D _[0sp,5 L7 (5, S)IS(AB)

k k

- Z [0ps15,5, L7 (8, 8)|SS, Sh}

where 3 is between 8° and 3, and S and S are between 0 and S. By Lemma [B.6]
05L(B,6(B)) = 0L + (035 L + (Opr LYH " (Dr5L)] (B — B°) + (psr LYH 'S
1 _ _ _
+3 > (996, L + (00 L) H Dps09,L]) [H'S]H 'S + Ru(B),
g

where for any v € R4™ 5,

R (B = Hsup v R (B)

vl|=1
<3 Haﬁﬁﬁﬁ* B.8)| 1881 + (NT) /2 955278, 9) | 811148
S NT) 2 9p5L°(5°, S)|, IS
= Op [(NT) /2 @D g AB| + (NT) /441 GOt Ag| 4 (NT) /041 a4 ]
= op(1) +op(VNTI|8 - 8|,
uniformly over 3 € B(3°, r3) by Lemma[B.6l We can also write

dsL(B,9(8)) = 5L — VNTW(AB) + (9 DOH 'S+ (0ps LOH 'S — (90 DH HH 'S

F 23 (00, T+ 050 TV (00, ) ST 'S+ (D),
=U—VNTW(AB) + R(B),
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where we decompose the term linear in S into multiple terms by using that

1 1

~(Os5rL") = (Op YU = |00 L) + O L) [H = H HH "+

The new remainder term is

R(8) = Ru(8) + O D)AB + |9 LYH ™ (0 L) — (050 D (9r5D)| AB

1 1 NS

+ Opor) (M = (A —HHH )| S = (0pe OF HA 'S

1
2

> 0500, LTSI HTIS = 85005, LH ' SI;H 'S
g

g

1 _ _ _ — =1 —m—1 o -1
5| 1000 1M Do, LM SIS = 105 LI O, TIA S|
)

g9

By Assumption [B1] and Lemma [B35,
IR < 1R (B)] + |05 ]| 18811 + 105021 [ =T || 100521 128
|95 Z|| [T (N0sraLll + 0052 ]) 1281
10ne ) [ = (A =77 ) [t + [ o ] ] 51
+ 5 10aasll ([ + 7 [) et =7 nse
1 e

Ll
2

_ _ _ — a1 —m—1 o =1
> (085 LIV H  0p00, LIH ' S|gH TS = > (086 LIH  [0p00, LI[H  SgH S
g

g9

= BB + 0p (1) + 0p (VN8 — 8°]) + Op [(NT)H/5+51/ o]
= op(l) —+ OP(\/WHﬁ - 60”)7

uniformly over 8 € B(8°,r3). Here we use that

_ _ _ —— S Rp—
> 1080 LIH [Opr0, LM SIgHT'S = > [0p0 LIH  [0p0r6, LIH SIH S
g

g9

<Nl |1 =" (I + 7)) s

> Ospra, LIHT'S],
g

+0sor )l |1 =T | |7 s

—1
> Oswro, LIH S,
g

+Jone ] [ 1

——1
> Osprs, LIH S,
g

+ lloss 2 |77 HZ Dosyin LIH S, "SI
g,h
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Proof of Corollary [B.2. 3 solves the FOC

-~

05L(B,6(B)) = 0.
By HE— BOH = op(rg) and Theorem [B]
0 =93L(B,6(B) = U =W VNT(B = 8°) + op(1) + op(VNT| B = 8°]).

Thus, VNT(B — 5°) = W U + 0p(1) + op(VNT||B — £°l)) = W, U + op(1) + op (VNT|B — 8°)),
where we use that W = W, + op(1) is invertible wpal and that i W;Ol + op(1). We conclude
that VNT(B — 8°) = Op(1) because U = Op(1), and therefore VNT(B — 8°) = W;U +op(1). [ ]

Proof of Theorem [B.3l # Consistency of QAS(B): Let n = nnr > 0 be such that n = op(ry),
(NT)~ V44129 = op(n), and (NT)"?Dr5 = 0p(n). For 8 € B(rg, 8°), define

-~
*

B) = argmin  ||S(8, d)|4- (B.7)
{#: lp—8°llq<n}

Then, ||S(5, a* B)llg < IS(B,8°)|l4, and therefore by a Taylor expansion of S(3,¢") around 8 = Y,
IS(8, 6" (8)) = S(B,¢")lq < IIS(B, " (B))llq + S8, 6")lq < 2[1S(8, ")
< 2|Slly +2 |[2up £(B.6°)| 18~ £°I

= Op [(NT)~V/4+1/CD 4 (NT)V 0|5 — g°) ],

uniformly over 8 € B(rg, %), where B is between 8° and S, and we use Assumption [B(v) and
Lemma [B.Al Thus,

sup_[|S(8,8°(8)) — S(8, 6°)ly = Op [(NT)7H/H1/E0 4 (NT)!/Calpy ]
peB(rs.p%)

By a Taylor expansion of ®(83,.9) around S = S(3, ¢°),

7(8) - 0| =||e(8.5(3.5(8)) - 2(8.5(3.")| < |[os@(.5Y|| |[s(8.6"(8) - 8(5.6")
= | 28,90 50567 8) - 568.6)| = 0r()]|5(8.3(8)) - 5(8.0")] .

where S is between S(3, ¢*(8)) and S(3,¢°) and we use Lemma [B5(i). Thus,

sup

(B) = || = Op [(NT)T/HVCD L (NTY D] = op ().
BEB(rp,p°) a

This shows that ¢*(3) is an interior solution of the minimization problem (B.7), wpal. Thus, S(3,¢*(3)) =
0, because the objective function £(f8,¢) is strictly concave and differentiable, and therefore gg* 8) =

3(8). We conclude that  sup  ||3(8) — ¢0H = Op () = op(ry).
BEB(rg,B°) q

# Consistency of 3; We have already shown that Assumption [B.l(i%) is satisfied, in addition to the
remaining parts of Assumption [B.1l which we assume. The bounds on the spectral norm in Assump-
tion BIl(vi) and in part (i) of Lemma B3 can be used to show that U = Op((NT)Y4).
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First, we consider the case dim(/5) = 1 first. The extension to dim(f8) > 1 is discussed below. Let
n= 2(NT)’1/2W_1|U|. Our goal is to show that 3 € [8° — 7, 3° 4+ 5. By Theorem Bl
DL(B° +1,6(8° + 1)) =U — WVNTn + op(1) + 0p(VNTn) = op(vVNTn) — W~/NTh,
0sL(B° =0, $(B° = n)) = U + W VNTn + 0p(1) + 0p(VNTn) = 0p(VNTn) + W VNTn,

and therefore for sufficiently large N, T
DsL(B° +1,6(8° + 1)) <0< L(B° —n, $(5° — 1))

Thus, since 855(3, QZ(B)) = 0, for sufficiently large N, T,

D5L(B° + 1, 0(8° + 1)) < D5L(B, (B)) < D5L(B° — n, S(8° — ).
The profile objective E(ﬁ,(};(ﬁ)) is strictly concave in 8 because L(3,¢) is strictly concave in (3, ¢).
Thus, 9gL(8, a(ﬁ)) is strictly decreasing. The previous set of inequalities implies that for sufficiently
large N, T

BO+n>pB>p"—n.

We conclude that ||B— Bl <n = Op((NT)~/4). This concludes the proof for dim(j3) = 1.

To generalize the proof to dim(8) > 1 we define B+ = 8° £+ 7 IIZ:ZSII' Let (B_,8+) ={rf- + (1 —
)B4+ | r € [0,1]} be the line segment between S_ and ;. By restricting attention to values 8 € (5_, 84)

we can repeat the above argument for the case dim(8) = 1 and thus show that Be (B—, B+), which
implies |5 — 69 < n = Op((NT)~/4). n
B.1.3 Proof of Theorem [B.4

Proof of Theorem [B.4l A Taylor expansion of A(f,¢) around (5%, ¢°) yields
A(B,¢) = A+ [0 Al(B = B°) + [0 Al(6 — ¢°) + 3(¢ — 6°) [0ser Al(¢ — ¢°) + RT (8, 0),
with remainder term

R2(8,0) = 1(8— B (085 AB, )] (B — 8°) + (B — B°)[050 A%, B)] (¢ — ¢°)
+ 1370 — 0" 095, A(8°, 9))(6 — )b — ¢,

)

where 3 is between 8 and 8°, and ¢ and ¢ are between ¢ and ¢°.
By assumption, |8 — 8°|| = op((NT)~1/4), and by the expansion of ¢ = ¢(3) in Theorem [B.I]

16— 6°llg < |1, 18T, + [, 190521,

58], + 4119 Nl IS + |25

_ OP((NT)_1/4+1/(2q)).
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Thus, for RY := RlA(B, qg),

RS <LIB- " sw s (050 A(8,0)]
BeB(rs,B%) $€Bq(rs,6°)
+NDEVYB -5 "l sup  sup 9w AB 9,
BEB(rp,°) pEBy(ry,8°)
FENT) = O3 s s [9ssA (3,

BEB(Tﬁ)BO) ¢EBQ(T¢)¢O)
=op(1/VNT).
Again by the expansion of ¢ = QZ(B) from Theorem [B.1]

F—0=NAB,8)— A= (0pA+ [0,AH [0gpL]) (B — 5°)

dim ¢
+ [0 A H ! <s +3 Z [a¢¢,¢gL]H13[H18]g> + IS H 0y AJHTIS + RS, (B.8)

p=
where
(RS = [RY + [0,A1 R (B) + 3(5 — 6 + H'8) (060 A (6 — 6° — H'S)|
<[BP |+ (NT)2 Ve 0, [ B2B))|
VTG = 0+ S| 06w Al |- 00~ S|
= op(1/VNT),
that uses } b — g0 — H*lqu = Op ((NT)~Y/2+1/2+¢) From equation (B8), the terms of the expansion

for 6 — & are analogous to the terms of the expansion for the score in Theorem [Bl with A(S, ¢) taking
the role of ﬁaﬂkﬁ(ﬁ, ?). |

C Proofs of Section {4

C.1 Application of General Expansion to Panel Estimators

We now apply the general expansion of appendix [Bl to the panel fixed effects estimators considered in
the main text. For the objective function specified in (ZI)) and (@I, the incidental parameter score

evaluated at the true parameter value is

{\/% Zthl aﬂgitl‘:l .....
[\/% Zﬁil 577&15] t=1,...,T

The penalty term in the objective function does not contribute to S, because at the true parameter value

S:

v'¢? = 0. The corresponding expected incidental parameter Hessian H is given in ([@Z). Section [D.4]

. = 1. .
discusses the structure of H and H = in more detail. Define

1 ——1 =1 =—1
Air 1= ==, (Hma)z‘j T Hiyayty T Heayyir + H(w)tr) Onljr, (C.1)



and the operator DgA;; := At — 0xAj1Eir, which are similar to Z;; and Dgl;; in equation (L3).
The following theorem shows that Assumption [£.1] and Assumption for the panel model are
sufficient for Assumption [BI] and Assumption for the general expansion, and particularizes the

terms of the expansion to the panel estimators.

Theorem C.1. Consider an estimator with objective function given by 1)) and @I)). Let Assump-
tion[{-1) be satisfied and suppose that the limit W o, defined in Theorem[].1] exists and is positive definite.
Let =38, ¢ =1/(16 +2v), 75 n7 = log(NT)(NT)~'/® and rg y7 = (NT)~ /6. Then,

(i) Assumption B holds and ||B— BOl = Op((NT)~1/4).

(i1) The approzimate Hessian and the terms of the score defined in Theorem [Bl can be written as

3~
M-
B

W=— Eg (935 lit — 02 lisZisZly)
=1 t=1
N T
U0 = 33 Dt
NT i=1 t=1
N T
U<1>—LZZ —Ait [Danlis — Ey(Darls )]+1A21E (Dgn2lis)
= \/W it Brtit ) Brtit 2 it ¢ Bm2tit .

Il
=

4 t=1

(iii) In addition, let Assumption [[.3 hold. Then, Assumption [B.2 is satisfied for the partial effects
defined in (2.2). By Theorem[B.,

VNT (5-38) = v + V" + op(1),

- T/
1 ——1 1
VY = | == Y Ee(Dsn) | W U — ——= " Eg(Wir)rlis,
A NT 2- s(Dpli)| W NT - (Wit )Orlit

~ 1/

(1) _ 1 —=—1 (1) 1
Vi’=|— E Es(DgA; W UV + — E Nit (Uit On2lit — Eg (Vi) Egp(Or24;
A NT — ¢( B t) 'NT t[ t t ¢( t) ¢( t)]

it

1
=) AL [Eg(0r20it) —Ey(Oralis)Eg(Vyr)] .
2\/@2 t[ ¢( t) ¢( t) ¢( t)]

Proof of Theorem [C.1}, Part (i). Assumption[BIl:) is satisfied because imy 700 % = limpy 700 % =
K+ kL

Assumption [B11(#4) is satisfied because £;; (3, 7) and (v'$)? are four times continuously differentiable
and the same is true for £(3, ¢).

Let D = diag (ﬁ?aa),g?w)). Then, Hﬁ_lu = Op(1) by Assumption I(v). By the properties
of the matrix norms and Lemma [D.§] Hﬁ_l - 5_1H 1‘
Hﬁ_lu <|H' < Hﬁ_lH + ‘ " - 5_1H = Op(1) by Lemma [D.4] and the triangle inequality.

q 00 o] o'}

We conclude that Assumption [B}(iv) holds.

We now show that the assumptions of Lemma are satisfied:

< (N+T1) Hﬂ_l -D

= Op(l) Thus,

o0 max
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(i) By Lemmal[D2] y; = \F >, s, lir satisfies Ey(x7) < B. Thus, by independence across i

2

2
1 1 1
E —— ) 954 =E — i =— Y Eyx?<B,
N AT onte] | -5 | (5 T0) | -4 Tmi s

and therefore \/% Zi)t 0, Lit = Op(1). Analogously, ﬁ Ei,t {08,8.0it —E¢ [08,8,it]} = Op(1/VNT) =
op(1). Next,

2
Ey ( sup sup o NTzaﬁkﬁlﬁm 1t(ﬂ77rzt))

BeB(rg,B9) peBy(rg,

1

<E sup |0 WLia(Bymi)| | <Eg | —= M(Z)
? | seBimso) pebrape) NT Z s ?\NT Z

< Mﬁ > M(Zy)? = W S EsM(Zy)? = 0p(1),
it it

and therefore supgep(;,, g0) SUPyeB, (ry,60) 7 > it 98488, Lit(B, mit) = Op(1). A similar argument
gives ﬁ Zi,t 0,8, lit = Op(1).

(it) For &it(B,¢) = Opunlin (B, min) or &it(B, @) = Opypinlin (B mit),
E, l up D ¢0)TZ Z&t 8, ¢
q
5l T (%E'W’@') |
RORLS

peB(rg,B°)
zﬁ ZMZJ t
- 3 ¥ 3 Sz = 0p0)

Le. SUPgep(y,, 50) SUPEB, (ry,00) =% > fit(ﬁ,@’q = Op(1). Analogously, it follows that
SUDGeB(rs,50) SUPGEB, (rs,60) & 2oi | T 2o Sit(B,¢)|" = Op (1).

(iii) For £i(B,¢) = Onrlir(B,mi), with r € {3,4}, or £y (B, ¢) = Iparlin(B, mit), with r € {2,3}, or
git(ﬂv ¢) = aﬁkﬁﬂﬂfit(ﬁ,ﬂit),

(8+v)
E, < sup sup max—Z|§n B, ®) )

BEB(rp,B°) By (rs,¢°)

<E¢

(8+v)
1
=Ey |max| sup sup = > [&i (B 9)
i (56605,&)) $EBq(rg.00) T zt:

(8+v)

(8+v)
<E4 Z( sup Z|§zt5¢ ) < E4 Z(%ZM(Z”)>

BEB(rs,8°) ¢eB <r¢ o T

<E, Z ZM (sw)] Z ZE¢M (8+u),(9p()
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Thus, SUPgep(r,,50) SUDGEB, (ry 60 MaXi 7 Yy it (B, ¢)| = Op (NY/EF)) = Op (N*).  Analo-
gously, it follows that supgep(,, oy SUPges, (r,,¢0) MAXt 3 1€ (B, 9)| = Op (N?).

(iv) Let x; = \/—% > Oxlir. By cross-sectional independence and Eg4(0:0;4)® < E,M(Z;)® = Op(1),
EgXx§ = Op(1) uniformly over t. Thus, E4~ >, x§ = Op(1) and therefore 7 Y, \/Lﬁ > Onliy .
Op (1), with ¢ = 8.
Let x; = % > 0l (B0, 7Y,). By Lemma [D.2] and Ey(0,4::)%" < EgM(Zy)3T" = Op(1),
Esx$ = Op(1) uniformly over i. Here we use pn > 4/[1 —8/(8 + v)] = 4(8 + v)/v that is imposed in
Assumption Bl Thus, Ex% >, x§ = Op(1) and therefore + >, % > 8776“‘(1 = Op (1), with
q=_8.
The proofs for £ 3, \/_1N > 08unlit — Eg [0, lit) - Op (1) and + X,

Op (1) are analogous.

2
77 2t Onlit—Eq [Op,xlit] ’ =

(v) Tt follows by the independence of {(¢;1,...,4;7) : 1 < i < N} across 4, conditional on ¢, in
Assumption [B1(74).

(Vl) Let §it = &néit(ﬂo, ﬂ-?t) — E¢ [aﬂ-réit], with r € {2, 3}, or §it = 8ﬂkw2€it([30, ﬂ-?t) — E¢ [83k,rz€it] . For
7 = v, max; Ey [¢577] = Op(1) by assumption. By Lemma [D.1]

D By [Ginkis]| = D [Cove (&ir, &is)|

_ v v11/(84v »11/(8+v
< Z[S a(|t—s|)]1 2/(8+v) [E¢|€t|8+ } /( ) [E¢|€S|8+ } /( )

S

O m ) < &S = G jo0,
m=1 m=1

where C is a constant. Here we use that > 4(8 4 v)/v implies u[1 — 2/(8 4+ /) > 4. We thus have
shown max; max; »_  Eg [£i&)s] < Crt/90 =: C.

8
Analogous to the proof of part (iv), we can use Lemma[D.2]to obtain max; E, { [% Yo &t} } <,

8
and independence across ¢ to obtain max; Eg { [\/—% > @t] } < C. Similarly, by Lemma [D.2]

4
max Eg \/LT Z [€it&je — Eg (fz'tgjt)]] <G,
I ¢

%,

which requires p > 2/[1 — 4/(4 + v/2)], which is implied by the assumption that p > 4(8 4+ v)/v.
(vii) We have already shown that HﬁA ’ =0Op(1).
q

Therefore, we can apply Lemma [D7] which shows that Assumption [B.I[v) and (vi) hold. We have al-
ready shown that Assumption[B.)4), (i), (iv), (v) and (vi) hold. One can also check that (NT)~1/4+1/(29) =
op(rg) and (NT)Y/(2Drg = op(ry) are satisfied. In addition, £(3, ¢) is strictly concave. We can therefore
invoke Theorem [B:3 to show that Assumption [BI|(ii) holds and that || — 8°]| = Op((NT)~V/4). =

Proof of Theorem [C.1}, Part (ii). For any N x T matrix A we define the N x T matrix P A as follows

(PA)y = af +7, (a%,7") € argmin Y " Eg(—0r2lis) (Ait — o — 7)° . (C.2)

o,y it
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Here, the minimization is over & € RY and v € R”. The operator PP is a linear projection, i.e. we have

PP = P. It is also convenient to define

PA=PA here A At (C.3)

= wher it = 0. .
’ " Eg(—0n2li)
P is a lincar operator, but not a projection. Note that A and Z defined in (CI]) and (3] can be written
as A = PA and B, = PBy, where Ay = —0xLy and By = —Ey(9p,7Lit), for k=1,...,dim 3
By Lemma [D.11i1),
1

N T
— 1 - — =1
W=——— (0ppL+ 086 L H  [0spL)) = —= D> [Eg (Dpplis) + Eg (—0n2lir) EuZ
#NT(L%B D5 LI H (006 ) NT 2 2 [Fo (Ot o (=0x2lie) EuZi]

By Lemma [D.11J4),

N T
1
0) = 6,8£ + [(93¢/£] 1 \/—_ Z 8,6[“ ult 15) fzt = NT Z Z Dﬁfit.
it

i=1 t=1

We decompose UM = U@ + U1 with

UMD = (0sp LJH 'S — [0s L) H HH 'S,
dim ¢
— — ——1 =\ 51 o571
U = 3" (9006, L + 050 LV 0pi0, L)) H ST 8], /2.

g=1

By Lemma [D.11K4) and (i44),

T
e — _ Z At [Dgrlic — Ey(Dprlit)],

1t=1

7\
’ﬂ
M=

Zt o (Oanbie + 2 00l = -

2

and

(o)

Z [E¢ Dpmzlit) + (055 L) H "B (905 %)] ,

it
where for each i,t, 03020 is a dim ¢-vector, which can be written as 0y0,24;; = (A/1 ) foran N x T
matrix A with elements Ajr = 0psljr if j=iand 7 =t, and A;; = 0 otherwise. Thus, Lemma [D.117)
gives [Opy L] H 8¢8ﬂ2£1t = — ZLT Ei-1(i = 7)1t = 7)0pslyy = —Ei1O0rslyy. Therefore

N T
1
Ue — 5 \/_ZA g (Opn2lis — EirOpaliy) = 5 D> ALEG(Dgrati).

i=1 t=1

%

Proof of Theorem [C.T], Part (ii7). Showing that Assumption [B.2] is satisfied is analogous to the
proof of Lemma and of part (i7) of this Theorem.

7B, and =, are N x T matrices with entries By i+ and Zj i¢, respectively, while B;; and Z;; are dim S-vectors with entries

Byit and Ei i¢.
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In the proof of Theorem [£1] we show that Assumption ] implies that U = Op(1). This fact
together with part (¢) of this theorem show that Corollary is applicable, so that v NT (B - B% =
W;U + o0p(1) = Op(1), and we can apply Theorem B4l

By Lemma [D.11] and the result for \/W(B\— B2,

/

VNT |95 + (99 DVH (99 L)| (B — 8°) = ﬁ > Eo(Dsdi) | W (U0 +UD) +0p(1).

it

(C.4)
We apply Lemma [D.11] to U(AO) and U(Al) defined in Theorem B4l to give
1
VNTUY = ———= 3 " Ey(Wir) Ol
A m ; ¢7( t) t
1
VNTUY = =" Nt [Wir0r iy — B (W30)Eg (D2t
A miztt[tZt ¢(Vit)Eg (Or2Lit)]
1
Wi th A (B (D2 Dit) — B (O lit) B (W) - (C.5)
The derivation of (C4) and (CH) is analogous to the proof of the part (i¢) of the Theorem. Combining
Theorem [B.4 with equations (C4]) and (CH) gives the result. ]

C.2 Proofs of Theorems [4.1] and

Proof of Theorem H.Il # First, we want to show that U®) —; N (0, W.). In our likelihood setting,

Ey03L = 0, E4S = 0, and, by the Bartlett identities, Ey(93Lds L) = —\/%8/33/2, Ey(0sLS") =
—ﬁaﬁdz and E4(SS') = \/% (ﬁ - \/%vv’). Furthermore, &’v = 0 and sy Lv = 0. Then, by
definition of TV = — 1 (aﬁﬁ,z +[0p0 L) H [awZ]) and U® = 9L + [0 L) H 'S,

E, (U<0>) —0, Var (U<0>) —W,

which implies that limy 77— Var (U(O)) = limy 700 W = Wa. Moreover, part (ii) of Theorem
yields
N

T
U — \/% Z Z Dglit,

i=1 t=1
where Dgl;s = 0gliy — Oxli+Z;+ is a martingale difference sequence for each ¢ and independent across 1,
conditional on ¢. Thus, by Lemma [D.3] and the Cramer-Wold device we conclude that

U SN [0, Jlim Var (U(O))] ~ N(0, Wo).

,T—oc0

# Next, we show that UV —p KBy 4k 'Dy. Part (ii) of Theorem [Cdl gives UM = 1) 4 (1),
with

N T
1
U = ————3"3" Ayt [Dpnliv — Eg(Dprlin)],
NT =1 t=1
N T
pan _ 1 S S AL Ey(Dpretir).
2 v NT =1 t=1



Plugging-in the definition of Ay, we decompose U(1®) = y(te.l) 4 y(1a.2) 4 y(1e.d) 4 7(ted) where

U(la’l) Z_iala)zj <Za éjT)

ytaesd) — _— Z__l (Z &TEJT) [Dprlit — Ey(Dprlit)] s

DBW it T Eqb(Dﬁﬂ'g’Lt)]

a2) _ T ZH ot Onlir | > [Dpnlic — Es(Daxlir)],

J

ad) _ 7 Z——l

> 0clir | > [Dpnlis — Eg(Darlir)] .
J

%

By the Cauchy-Schwarz inequality applied to the sum over ¢ in U(#2),

2

2
(U(la,z))2 < (N1T)2 Z Zﬂala)tj&rﬁjf Z (Z [Dprlis — E¢(D5w€it)]>

t 3,7 t %

By Lemma [D.8, #(,,;; = Op(1/VNT), uniformly over t,j. Using that both \/NTﬂ(iyla)tjaﬂij and

Dgrlit — E¢(Dgrlit) are mean zero, independence across ¢ and Lemma [D.2] across t, we obtain

2

1 1 ’
Ey INT ;[\/ﬁ GerilOntis | = 0p(1), Eq (\/—N zzj [Dpxliv — E«b(Dﬂwfit)]) = 0p(1),

. =1 2
uniformly over ¢. Thus, >, (Zjﬁ H(W)tjawzﬁ) = Op(T) and >, (>, [Dprlit — Ey(Dplir)])* =
Op(NT). We conclude that

2 1
Ue) = — Op(T)Op(NT) = Op(1/N) = op(1
( 0P (T)OF(NT) = Op(L/N) = op(1).
and therefore that U(1%2) = op(1). Analogously one can show that U(1¢3) = 0p(1).
__ -1

By Lemma [D.8] ’H(ala) = —diag [(\/#_ ZtT—l E (&rzfit) } + Op(1/v NT). Analogously to the
proof of U1%2) = op(1), one can show that the Op(1/v/NT) part of 7—[ ) has an asymptotically
negligible contribution to U1, Thus,

3 (>_; Oxlir) 324 [Dprlit — Eg(Dprlit)]
VNT 4 >t Eg(Or2lit)

::U’L(la,l)

U(la,l) —

"rOp(l).

2
Our assumptions guarantee that E, [(U(la 1)> ] = Op(1), uniformly over i. Note that both the de-

la,1) are of order T'. For the denominator this is obvious because of

nominator and the numerator of Ui
the sum over T'. For the numerator there are two sums over T, but both 0:¢;; and Dgrlit —E4(Dpgrlit)

are mean zero weakly correlated processes, so that their sums are of order v/7. By the WLLN over i
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(remember that we have cross-sectional independence, conditional on ¢, and we assume finite moments),
Ny, yte = N-1 > E¢Ui(la’1) +op(1), and therefore

E it Dpnlir
U(la,l) — Z Zt 1 ¢ (8 4 tB 4 ) +OP(1)
i=1 Zt 1 Eg (Or2Lir)

—VEBY

Here, we use that Ey (0x¢;+Dgrli-) = 0 for t > 7. Analogously,

/T 1 Ey (0xlit Dprl;
U(la,4) — Z Zz 1 ¢ tB t) +OP(1)
t 1 Z E¢( On2lit)

—VED®

We conclude that U@ = kB 4 x~1 DY 4 0p(1)
Next, we analyze U1, We decompose A = A A(z) Az(f )+ Az(f ), where

) 1)

" 1N ) T ) 1 ) T
A = ——= Hipayy O Oxlyr, A = ——= "Hiay D Onlye,
NT = p—t NT j=1 =1
3) L vzl v @) 1\
Aif -~ Z g(_a'y)i‘r Z 87T€j7" Az? = _—/— w’y)t‘r Z 8 éJT
NT T=1 T=1 NT T=1
This decomposition of A;; induces the following decomposition of U (1)
) — Z ybpa) bpa) — ; ZZAS)A(Q)E%DW%J-

P,q=1 i=1 t=1
Due to the symmetry U109 = 7(1%:4:7) this decomposition has 10 distinct terms. Start with U(1%1:2)

noting that

(16.1,2) _ (1b 1, 2)

AL
Uttt = iZE (Do lit) s = [NTHL, Onlsr | [ —= 0.,
i 9T e P\ B2 1t)N2 Z |: aoz)z_h voz)t_]g:| Z Jj1T \/T ; ljor | -

J1,J2=1
By Ey(0r4i) = 0, Ey(0r ;10 L) = O for (i,t) # (4, 7), and the properties of the inverse expected Hessian
2
from Lemma [D.8 E, [ et 2} = Op(1/N), uniformly over i, Eg4 [(U(lb L 2)) } = Op(1), uniformly

over i, and Ey [Ui(lb’l’mU;lb’l’m} = Op(1/N), uniformly over ¢ # j. This implies that Eg yn12) —
Op(1/N) and E, [(U(lb'fu) —Eg U(lb’u))ﬂ = Op(1/V/N), and therefore U112 = op(1). By similar

arguments one obtains U (1620 = op(1) for all combinations of p,q = 1,2, 3,4, except for p=¢ =1 and

p=q=4

Forp=q=1,
(.1,1) _ Z (1b11)

v =1

w : 1 1 N T T

15,1,1) _
O S Dty 3 VIR Fis) (o ) (g o)

t=1 Ji,j2=1 =1 =1
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Analogous to the result for 71012 |, [(U(lb’l’l) —Eg U(lb’l’l))ﬂ = Op(1/V'N), and therefore 1" 1) =
E, UML) 4 6(1). Furthermore,

Y i1 Bo(Dprsli)Es | (0eta)’]

E¢ U(lb,l,l) Z 5 _|_0(1)
2\/ =1 {Z?:l E¢ (8ﬂzéit)}
E D 24;
\/ Zzt 1BolDontlie) | oq),
St Eg (0n2liy)
=/EB®
Analogously,
Ubdd) — g, gbad) 4 op( /T Zz 1 Eg(Dpr2lit) +o(1).
Zz 1]E¢7( 2£1t)

(2) =)

+ op(1). Since By = limy 700 B
Doo = limy 700D + D( )] we thus conclude UM = kB, 4+ k' Do + 0p(1).

# We have shown U©) — 4 N'(0, W), and UV —p kB +k ' Do. Then, part (ii) of Theorem [C]
vields VNT(B — 8°) —q W N(kBoo + £ ' Dog, Weo). n

We have thus shown that U1 = kB +xk 1D + B] and

1)

(2)]

Proof of Theorem We consider the case of scalar Ay to simplify the notation. Decompose

~ —5 —5 TNT = -9 -9
rn7(8 = 6r — Boo/T — Do /N) = rn1(6 — 8%7) + ——==VNT(6 =6 — B, /T — D /N).
NT( NT oo/ oo/ ) NT( NT) m ( oo/ oo/ )
# Part (1): Limit of v/ NT(g— J— Fio/T - ﬁio/N). An argument analogous to to the proof of
Theorem 1] using Theorem [C.T)(#44) yields

VNT(3 —8) =a N (HB + & 1D0, V‘S(”)

where Vi()l) =E { (NT)"*>, ,Ey [Fft]} , for the expressions of Eio, ﬁio, and T';; given in the statement
of the theorem. Then, by Mann-Wald theorem

VNT( = 6 = BL/T - Dioe/N) =a N (0,72).

# Part (2): Limit of ryr(6 — 6%4). Here we show that rxr(6 — 6%p) —a N(O,Vi(f)

. . . . . —=0(2
of convergence ryr given in Remark 2] and characterize the asymptotic variance Voi )

rnr through E[(§ — 6%,)%] = O(ry%) and ryz = O(E[(§ — 6%4)?]), where

) for the rates

. We determine

2

E[(5 — 6%7)2] = E % S A | = ﬁ > B[R, (C.6)
it

4,558,

for Ayt = Ay — E(Ay). Then, we characterize Vif) as Vif) = E{r,;E[(§ — 6%7)?]}, because E[§ —

8%7] = 0. The order of E[(d — 6%1)?] is equal to the number of terms of the sums in equation (C.6]) that
are non zero, which it is determined by the sample properties of {(X;t, i, 7:) : 1 <i < N, 1 <t <T)}.
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Under Assumption 22(7)(a),

1 < _
E[(6 — 0%r)) = 175 2B [Budi| =0 (N 7Y),
i,t,8
because {&n :1<i< N;1<t<T} is independent across ¢ and a-mixing across t.
Under Assumption E2(i)(b), if {a;}n and {y:}r are independent sequences, and «; and 7; are
independent for all i, ¢, then E[AyA,] = E[Ay]E[A;,] = 0if i # j and ¢ # s, so that

{5 %] = ars | 08 [Bube] + X B [Rudy] - B[R] -0 (EEL),
irt,s irjit Lt

because E[A;Ass] < E[Ey(A2)]Y2E[E4(A2)]/2 < C by the Cauchy-Schwarz inequality and Assump-
tion L2(ii). We conclude that ry7 = /NT/(N +T — 1) and

2
792) _ =) Tnr A A AA
Vv =E N2T2 ZE [AltAw} + Z E [AitAjt}
it,s i#j,t
Note that in both cases ryr — 00 and ryp = O(VNT).
# Part (3): limit of ryp (6 — 0%, — T’lgio — Nflﬁio). The conclusion of the Theorem follows
—5(2)

because (6 — §%,) and (3\— d— T_lgio - N_lﬁio) are asymptotically independent and Vio =V "+

Vé(l) limN)T_)OO(TNT/\/ NT)2 |

C.3 Proofs of Theorems [4.3] and [4.4]

We start with a lemma that shows the consistency of the fixed effects estimators of averages of the data
and parameters. We will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

Lemma C.2. Let G(B,0) := [N(T = 5)]7' 32, 1541 9(Xits Xio—j, B, i + v, @i +vi—5) for 0 <5 < T,
and B be a subset of RAm™B+2 that contains an e-neighborhood of (B,w?t,w?)t_j) for all i,t, 5, N, T,
and for some ¢ > 0. Assume that (8,71, 72) — git; (B, m1,m2) := ¢(Xu, Xit—j, B, m1,72) is Lipschitz
continuous over BY a.s, i.e. |gi;(B1,m11,m21) — gitj(Bo: T10,720)] < Mg ||(Br, w11, ma1) — (B, 710, m20) ||
for all (B1,m11,m21) € BY, (B1,m11,m21) € B, and some M;; = Op(1) for all i,t,j, N,T. Let (B, (}5\) be
an estimator of (8,) such that |8 — B°|| =p 0 and ||¢ — ¢°||ec —p 0. Then,

~

G(Ba ¢) —P E[G(ﬁov (bo)]a
provided that the limit exists.

Proof of Lemma By the triangle inequality

-~

|G(B.9) — E[G(8°,¢")]| < |G(B,$) = G(8°,¢")] + op (1),
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because |G (6%, ¢°) —E[G(B°, ¢°)]| = op(1). By the local Lipschitz continuity of g;;; and the consistency
of (3,9),

3 1 = o~ ~ o~ ~
G(B,0) = G(B°,¢°)] < N(Ti—) E M| (B, @i + e, @ + Ye—j) — (8% af +77,af +V?—j)”
J ht=j4+1
1 ~ ~
< — M (118 = B2l + 4l — 0%
< NT ) Z+ (18 = B2l + 4116 = ¢° 1)

wpal. The result then follows because [N (T'—3)]~' 37, _~; Mis; = Op(1) and (1B= Bl +4[|d—¢°| o) =
op(1) by assumption. |

Proof of Theorem We separate the proof in three parts corresponding to the three statements
of the theorem.

Part I: Proof of W — p Wa. The asymptotic variance and its fixed effects estimators can be
expressed as W, = E[W (3%, ¢°)] and W= W (B, ), where W (B, ¢) has a first order representation as
a continuously differentiable transformation of terms that have the form of G(, ¢) in Lemma[C2 The
result then follows by the continuous mapping theorem noting that [|3 — 8°|| —p 0 and [|¢ — ¢°||ee <
|6 — ¢°|lq —=p 0 by Theorem [C1l

Part II: Proof of VNT (54 — 8°) —4 N(O,W;l). By the argument given after equation [B3)) in the
text, we only need to show that B - p Boo and D — p Doo. These asymptotic biases and their fixed
effects estimators are either time-series averages of fractions of cross-sectional averages, or vice versa.
The nesting of the averages makes the analysis a bit more cumbersome than the analysis of W, but
the result follows by similar standard arguments, also using that L — co and L/T — 0 guarantee that
the trimmed estimator in B is also consistent for the spectral expectations; see Lemma 6 in Hahn and
Kuersteiner (2011).

Part IIT: Proof of VNT(37 — 8°) —q N(0,W ). For 71 = {1,..., (T + 1)/2]}, Ta = {|T/2] +
L....,T} , To=TwhUTs, Ni = {1,...,[(N+1)/2|}, No = {[N/2] + 1,...,N}, and Ny = N7 UN3, let
B(jk) be the fixed effect estimator of 3 in the subpanel defined by i € ; and ¢ € '77C In this notation,

B7 = 3B300) _ 3(10) 9 _ 5(20) 9 _ B(O1) 19 _ 5(02) /9.

We derive the asymptotic distribution of v N T(EJ — %) from the joint asymptotic distribution of
the vector B = /NT(3(00) — g0, 3(10) _ 30 3(20) _ g0 3(01) _ 30 3(02) _ 30) with dimension 5 x dim f.
By Theorem [C1]

20K o 91(3>0)91(k>0)
VNT(BY™ - B7) = —JNT Z [Yit + bt + dit] + op(1),

iEN; tETy

for = W;olDﬂ&t, by = W;Ql [Ui(tm,l) n Ui(tlb,l,l)]’ and dy, = W;ol [Ui(tlaA) i Ui(tlb,4,4)], where the Ui(t.)

is implicitly defined by U() = (NT)~1/2 Di Ui(t'). Here, none of the terms carries a superscript (jk)

by Assumption 3l The influence function 1;; has zero mean and determines the asymptotic variance

18Note that this definition of the subpanels covers all the cases regardless of whether N and T are even or odd.
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—1 — —
W , whereas b;; and d;; determine the asymptotic biases B, and D, but do not affect the asymptotic

variance. By this representation,

1 1

1 2
B—gN|[r|1|®Beo+r ]| 2 |®Du,

2 1

2 1

—_ = = =

1
2
0
1
1

e =
O N = =

1
1
1 | oW |,
0
2

where we use that {1 : 1 <i < N,1 <t <T} is independent across ¢ and martingale difference across
t and Assumption (4.3
The result follows by writing VNT (87 —3°) = (3,—1/2,—1/2, —1/2, —1/2)B and using the properties

of the multivariate normal distribution. |

Proof of Theorem [4.4. We separate the proof in three parts corresponding to the three statements
of the theorem.

Part I: V0 —p Vio. A
Theorem [£3] so that the consistency follows by an analogous argument.

Part II: \/W(SA —6%7) —d N(O,Vio). As in the proof of Theorem 12 we decompose

o and V4 have a similar structure to Wao and W in part I of the proof of

rnr (64 = 8%.) = rap (6 — 6%) + XL /NT(54 — §).
N ( 1) =7rNT(0 = On7) INT ( )

Then, by Mann-Wald theorem,

—5(1)

VNT(64 — ) = VNT(5 — B /T — D° /N — 6) =4 N(0,Vor ),

provided that B? —p Eio and D° —p ﬁio, and rn7 (6 — 0%7) —a N(O,Vi(f)), where Vi()l) and V

are defined as in the proof of Theorem The statement thus follows by using a similar argument to
part II of the proof of Theorem [£3] to show the consistency of BY and ﬁ‘;, and because (§ — 6%7) and
(gA — 9) are asymptotically independent, and Vio —7°® + 7o limy 700 (rnr/VNT)?.

Part ITL: VNT (67 — 6%,,) =4 N(O,Vio). As in part II, we decompose

45(2)

2
oo

5 r ~
’I”NT(5J - 59\/T> = TNT(5 — 6?VT) 4 %1 /NT((SJ _ 5)

Then, by an argument similar to part III of the proof of Theorem 3]

—5(1)

VNT(57 = 6) =a N(0, Vo0 ),
) 3(2)

oo

5(2)

oo

and V

and ry7(6 — 6%p) —a N(0,V "), where Viil are defined as in the proof of Theorem

The statement follows because (§ — %) and (67 — &) are asymptotically independent, and Vio =

V6(2) =+ V6(1) limN7T*>OO (TNT/\/ NT)Q. |

D Useful Lemmas

D.1 Some Properties of Stochastic Processes

Here we collect some known properties of a-mixing processes, which are useful for our proofs.
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Lemma D.1. Let {&} be an a-mizing process with mizing coefficients a(m). Let E|& P < oo and

E|¢i1m|? < oo for some p,q>1 and 1/p+1/q < 1. Then,
[Cov (&, &rm)| < 8 alm)/” [EJ&IP]" [Blgm| ],
where r = (1 —1/p—1/q) .
Proof of Lemma [D.1l See, for example, Proposition 2.5 in Fan and Yao (2003). |

The following result is a simple modification of Theorem 1 in Cox and Kim (1995]).

Lemma D.2. Let {&} be an a-mizing process with mizing coefficients a(m). Let r > 1 be an integer,
and let § > 2r, u > r/(1—2r/8), ¢ >0 and C > 0. Assume that sup, E|&|° < C and that a(m) < cm™"
for allm € {1,2,3,...}. Then there exists a constant B > 0 depending on r, §, u, ¢ and C, but not
depending on T or any other distributional characteristics of &, such that for any T > 0,

1 T 2r
Ei{—=) & < B.
The following is a central limit theorem for martingale difference sequences.

Lemma D.3. Consider the scalar process & = Enrit, i =1,...,N, t =1,...,T. Let {(&z1,-.., &) :
1 < i < N} be independent across i, and be a martingale difference sequence for each i, N, T. Let
E|&:¢|?T0 be uniformly bounded across i,t, N, T for some § > 0. Let @ =Gyt > A > 0 for all sufficiently
large NT', and let ﬁ Ei,t 2 52 —>p0as NT — oo Then,

1
RN oS ).
amgfﬁd/‘/(o )

Proof of Lemma [D.3l Define &, = &prm = EnTiit, with M = NT and m =T (i—1)+t € {1,..., M}.

Then {&,, m = 1,..., M} is a martingale difference sequence. With this redefinition the statement of

the Lemma is equal to Corollary 5.26 in White (200T]), which is based on Theorem 2.3 in Mcleish (1974)),
: M

and which shows that E\}H Yooy &m —a N(0,1). [ ]

D.2 Some Bounds for the Norms of Matrices and Tensors

The following lemma provides bounds for the matrix norm ||.||4 in terms of the matrix norms ||.||1, ||.|2,
|-lloo, and a bound for ||.|2 in terms of ||.|[; and [|.|[4/(4—1). For sake of clarity we use notation |.|2 for

the spectral norm in this lemma, which everywhere else is denoted by ||.||, without any index. Recall
that [|Afloc = max; 3, [Ay] and [[Ally = [| A"

Lemma D.4. For any matriz A we have

1 _

1Al < (1AL 91 AL, forq>1,
2 _

1Al < (1A AL 2/, forq>2,

[All2 < 4/ 1 Allql[Allq/g-1); forq=1.

9Here can allow for an arbitrary sequence of (N, T) with NT — oo.
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Note also that ||Allq/(q—1) = [|A"|lq for ¢ > 1. Thus, for a symmetric matriz A, we have ||All2 < [|All; <
|Allco for any ¢ > 1.

Proof of Lemma [D.4l The statements follow from the fact that log||A|, is a convex function of

1/q, which is a consequence of the Riesz-Thorin theorem. For more details and references see e.g.
Higham (1992). |

The following lemma shows that the norm ||.||, applied to higher-dimensional tensors with a special
structure can be expressed in terms of matrix norms ||.||. In our panel application all higher dimensional
tensors have such a special structure, since they are obtained as partial derivatives wrt to o and ~ from
the likelihood function.

Lemma D.5. Let a be an N -vector with entries a;, let b be a T -vector with entries by, and let ¢ be an

N x T matriz with entries c;z. Let A be an N x N x ... x N tensor with entries

p times
ail if’ilzig:...:ip,
Aiyiy.iy = ‘
0 otherwise.
Let BbeanT xT x ... x T tensor with entries
—_—
r times
by, ifti=to=...=t,,
Biity..t, = .
0 otherwise.

Let C bean N X N x ... x NxT xT x...xT tensor with entries

p times r times

Ciity ifilzigz...zipG/ﬂdtlztg:...:tr,

0 otherwise.

Civig..iptita..t, = {

Let Cbean T xT x ... xTx N x N x ... x N tensor with entries

r times p times
5 o o Ciity ifilziQZ...:ipandtlthZ...:tr,
frfaedrtitaty 0 otherwise.
Then,

| Ally = max]ai, forp>2,
1By = max b, forr 2,
ICllq < llellq, forp=1,r=>1,
1Cllg < 1€ llqs forp=1,r>1,

where ||.||q refers to the g-norm defined in (AJ) with ¢ > 1.
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Proof of Lemma [D.5l Since the vector norm ||.||4/¢4—1) is dual to the vector norm ||.||; we can rewrite

the definition of the tensor norm [|C][, as follows

Icl, = max max max
1w llas@-n=1 JuPllg =1 [v®]g =1

k:27"'7p l:].,...,T
N T
®,,@  ,,@,0,2) (r)
Z Z U; "W, o zp R Oi1i2mipt1t2mtr
i1i2...ip=11t1t2...t.=1

The specific structure of C' yields

N
HC”q = max max max Z Z uEl)ugz) n 'UEP)UEMU?) T UET)Cit
e las@-n=1 Ju®llg =1 [vWlls =1 ;515
k:2,...,p l:l,...,T
N T
max max Zzuivicit = [lellg,
lullg/q—1) <1 lvllg<1 i—1 t—1
where we define u € RN with elements u; = u( )u(2) . ul(-p) and v € RT with elements v; = vﬁl)v,@ " '”y)v
and we use that ||U(k)||q - 1; fOI‘ k = 2;- Y 2 and ||v(l)||q = 17 fOI‘ l = 25' R lmphes |u1| S |’U451)|

and |v;| < |vi"], and therefore [[ully/q1_g < [[u®]lg/a_g = 1 and [[]lq < [[v™®]4 = 1. The proof of
IClq < II¢/|l4 is analogous.

Let A®) = A, as defined above, for a particular value of p. For p = 2, A® is a diagonal N x N
matrix with diagonal elements a;, so that [[A®) |, < [[A®@||1/7|A@|| Y7 = max; |a,|. For p > 2,

N
HA(P) — max max Z ’Uzgl)’U/EQ) T UEP)AiliQ
DOl =1 @], = e !
a  Nu®lg/q-1) lu™Mg =1 |44 =1
k=2,...,p
N
_ - max Z ul(_l)ul(?) ) ”ugpfl)u;p)Al(_J?)
lu®llg/(q-1y=1 IIH(’“)Hq = i5=1
k=2,.
N T
max max = ||A(2)||q < max |a;|
lullg/a-1) <1 llvlle=1 Zl Z1 ' |
where we define u € RY with elements u; = u( )u(2) . -ugpfl) and v = u(P), and we use that ||u(k)||p =1,

for k =2,...,p— 1, implies |u;| < |u )| and therefore [|ully/(g—1) < flu®) lla/(q—1) = 1. We have thus
shown ||A(p)|| < max; |a;|. From the definition of ||A(p)Hq above, we obtain ||A Hq > max; |a;| by

choosing all u*) equal to the standard basis vector, whose i*’th component equals one, where i* €

argmax; |a;|. A®|| = max; |a;| for p > 2. The proof for ||B||, = max; |bs| is analogous. |
7 q q

The following lemma provides an asymptotic bound for the spectral norm of N x T matrices, whose

entries are mean zero, and cross-sectionally independent and weakly time-serially dependent conditional
on ¢.

Lemma D.6. Let e be an N x T matriz with entries e;;. Let 52 T Zt 1Eg(e), let Q be the T x T
matriz with entries Qs = % Zfil Ey(eitess), and let n;; = ﬁ thl leitejt — Eg(eiresr)]. Consider
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asymptotic sequences where N, T — oo such that N/T converges to a finite positive constant. Assume

that

(i) The distribution of e; is independent across i, conditional on ¢, and satisfies Ey(e;) = 0.
iy N _o\4 N N
(i) % Yimy (07) =0p(1),  FTe(QY) =0p(1), x>isiEs(nh) =0p(1), §=20-1Es (ni) =
Op(1).
Then, Eg|le||® = Op(N?®), and therefore |le|]| = Op(N>/®).

Proof of Lemma [D.6l Let ||.|r be the Frobenius norm of a matrix, i.e. [|Al|p = /Tr(A4’). For
o} = (67)% o} = (67)" and &5, = 1(j = k),

N N T 2
Jel® = llec’ee’|? < lec'ec’|B = (Z > M>

ij=1 \k=1t7=1

N 2
l (77 k +T1/25m0 ) (77 k +T1/26 10 )1
k

i,j=1 =1
N N 2
=77 )" (Z ke + 2T 2,62 + T5ija;1>
1,j=1 \k=1

I /\

N 2
< nlkn]k? + 4'T,r]1j 7 + T257,_] 78
k=1

N N
<Z mkmk> +127° Z aind +31% 68,
k=1 7,j=1 =1

where we used that (a + b+ ¢)? < 3(a? + b? + ¢3). By the Cauchy Schwarz inequality,

2] N N N
Eylle]® < 3T°E, Z (Z 7711977]1@> + 1273 <NZU§> > Ey(nl) | +37°) of
i=1

| 6J=1 3,J=1

0
= 3T2E¢ Z <Z nzknjk> + OP(TBNQ) + OP(TBN).

z]l
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Moreover,

N N 2 N
Ey Z( mk??jk) = Eg(nxngenang) = Eg(mgmirmams)
i,j=1 \k=1 i,j,k,l1=1 1,5,k,1=1
N
< > Eg (igmiemms) | +4| Y aieBo(maniniemm)|
1,5, k,1 i,4,k=1
mutually different
3y 1/4
N N
< > Eg (Mignjxnkema) | +4 S Eemi)| | D Eolnl)
i7j7k7l i)j7k:1 ivj)kzl
mutually different
3y 1/4
XN ;N
3 4 4
- Z Eg (mijnjemrmi) | + 4N lﬁ ZE¢(771'1')‘| WZ Eg(n;;)
Zv]vkvl =1 i,j=1
mutually different
= Z Eo (nijnixneimi) | + Op(N?).
i7j7k7l

mutually different

where in the second step we just renamed the indices and used that 7;; is symmetric in 4,7; and
aijk € [0,1] in the second line is a combinatorial pre-factor; and in the third step we applied the
Cauchy-Schwarz inequality.
Let Q; be the T x T matrix with entries §2; ;s = Ey(ejeis) such that Q = % sz\il Q;. For i,j,k,l
mutually different,
1 T
Ey (Mijnjemeams) = T2 Z Ey(eiteji€jserseruluiveiv)

t,s,u,v=1

T

1 1
= ﬁ Z E¢(eiveit)E¢(ejtejs)E¢(ekseku)E¢(eluelv) = ﬁTr(QinQle) Z 0

t,s,u,v=1

because ; > 0 for all . Thus,

> Eg (mignenemi) | = > Eg (migniemrimi) = % > Tr(0:92; Q8
i, 7, k,1 i, 7, k,1 1,7, k,1
mutually different mutually different mut. different
1 & N4
< > (i) = FTr(Q‘*) = Op(N*/T).
i,7,k, =1

Combining all the above results gives Ey|le||® = Op(N®), since N and T are assumed to grow at the

same rate. |

D.3 Verifying the Basic Regularity Conditions in Panel Models

The following Lemma provides sufficient conditions under which the panel fixed effects estimators in the

main text satisfy the high-level regularity conditions in Assumptions [Bv) and (vi).
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Lemma D.7. Let L(83,¢) = \/— [Z”&t(ﬁ,mt) — —( '$)? }, where i = o; + Y, a = (a1,...,an),
v = Y,--01), ¢ = (&), and v = (U, 1%). Assume that £;(.,.) is four times continuously

differentiable in an appropriate neighborhood of the true parameter values (8°,¢°). Consider limits as
N, T — oo with N/T — k% > 0. Let 4 < ¢ < 8 and 0 < € < 1/8 —1/(2q). Let 13 = rgnT > 0,
re =roNT >0, withrg =0 [(NT) Y/ CD=¢] and ry, = o[(NT)"¢]. Assume that

(i) For k,l,m e {1,2,...,dim g},

1 1 1
INT > 0.t = Op(1), NT > sl = Op(1), NT > A08s,lit — B [9p,8,Lu]} = 0p(1),
it it it

1
P sup 0318, Lit (B, i) = Op(1).
BEB(r3,8°) pEBy(rs,d0) NT ; kB

(ZZ) Let kvl S {1725 .. adlmﬂ} FOT gzt(ﬂv(b) = aﬁkﬂ'éit(ﬂaﬂ-’it) or gzt(ﬂv(b) = aﬁkﬁlﬂéit(ﬂ)ﬂ-’it)7

q
1
7 9 :O 1 )
5668(1:5ﬁ0)¢66 P TZ zi:ﬁt(ﬂ ®) p(1)
q
2(8,8) =0p).
ﬂeg(up zt:ét(ﬂ ) p(1)

(iii) Letk,l € {1,2,...,dim3}. For&;(8,¢) = &rréit(ﬂ,mt), withr € {3,4}, or & (B, @) = Oparlit(B, mit),
with r € {27 3}; or git(ﬁu ¢) = 8ﬁkﬁlﬂ2£it(67 7Tit)7

1
sup SUD  MaX > 1&(B,6) = Op (N*),
BEB(rz,B°) peBy(ry,¢0) t
1
sup sup  max — |&(8,9)] = Op (NQE) )
BEB(rs,B°) $€By(rs0?) T N ;

(iv) Moreover,

it Op (1), it Op (1),
2
—Eg [Oprlu]| =Op(1),
2
Zaﬁw it = Eg [Oprlis]] = Op(1).
(v) The sequence {(&-1, oo lir) 1 <1 < N} s independent across @ conditional on ¢.

(vi) Let k € {1,2,...,dimB}. For & = Oxrliy — By [Oxrliz], with v € {2,3}, or & = Op, p2lit —
Ey [83k,r2€it] , and some U > 0,

%Z@t} } <C,

1
\/LT Z [€it&jt — Eg (fitfjt)]] <,

mlax E, [51_8;”7} <C, miax mtaXZIE¢ [Ei&is] < C, rniax Eq {

max Ey

8
1
— Sl V<c E
Fee] fee s

uniformly in N, T, where C' > 0 is a constant.
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(vii) Hﬂ‘luq = 0p(1).

Then, Assumptions [BI(v) and (vi) are satisfied with the same parameters q, €, rg = rg. N1 and ry =

T¢,NT used here.

Proof of Lemma [D.7l The penalty term (v'¢)? is quadratic in ¢ and does not depend on (3. This
term thus only enters 0, L(53, ¢) and Jpe L(B, @), but it does not effect any other partial derivative of
L(83, ¢). Furthermore, the contribution of the penalty drops out of S = 9,L(8°, ¢°), because we impose
the normalization v'¢® = 0. It also drops out of 7L, because it contributes the same to H and H. We can
therefore ignore the penalty term for the purpose of proving the lemma (but it is necessary to satisfy

the assumption Hﬁ_l H = Op (1)).
q
# Assumption (7) implies that ||0sL|| = Op(1), ||0ss L] = Op(VNT), H(’?@@/EH = op(VNT), and

sup sup  ||08ssL(B, ¢)|| = Op (\/ NT). Note that it does not matter which norms we use
BEB(TﬁvﬂO) ¢EBQ(T¢7¢O)
here because dim f is fixed.

# By Assumption (ii), [|9sp L, = Op (NT)Y(29) and  sup sup |06 L(B, 9)II, =
BEB(rp,B%) p€Bq(ry,°)

Op ((NT)l/(Qq)). For example, dg, o, L = ﬁ >+ 08, xlix and therefore

q\ 1/a
)1 —0p (Nl/q) - 0p ((NT)l/@q)) _

16,0 Lll, = (Z

B

1
LS Ot
VNT <~

Analogously, (|9, L], = Op ((NT)Y/(9)) and therefore 1080 Lll, < 1980 Lll,+ 087 Lll, = Op ((NT)V/ ).
This also implies that [0 L], = Op ((NT)Y29) because dim 3 is fixed.
# By Assumption (i), [[0pps L], = Op (NT)), |10p46 L], = Or((NT) ),

sup sup  [[0ppssL(B, O)|l, = Op (NT)),  sup sup  [9psssL(B, O)Il, = Op (NT)),
BeB(rg,p%) $€Bq(re,¢°) BEB(rs,°) d€B,(r¢,¢°)
and  sup sup  [|0ppps L(B, D), = Op (NT)). For example,

BEB(r5,8°) pEBy(r¢,¢°)

10666 L1, < N0aaalll, + 1aarLll, + [Oaralll, + 19as- L],
+10500Ll, + 1030 L1, + 100 Lll, + 1057+ L1,
< [Oraalll, + 10y L], + 3 10rar Lll, + 3 [0nralll,
< NOraalll s + 10ma7 Ll oo + 3 10rar 1|2 [0nraLll L + 3 Onay L1 2 |0l

1-1/q 1/q
= \/% lm?x ;6,1&[“ ;6773[“ +3 (mlaxg |67T3£it|> / (mtaxg |aﬂ'3£it|> /
1/q 1-1/q
+3 (mlax ; |8ﬂ3€it|> (méix ; |8ﬂ3€it|> 1

1-1/q 1/q

m?xz |03 it + mtax; |Or3lit| + 3 (m?x; |8ﬁ3£it|> (mtaxg |8ﬁ3€it|>
1/q 1-1/q

+3 (mzaxg |8W3€it|> <mtaxg |8W3€it|>

+ m?x

IN

3-
N

— Op(N*) = Op((NT)").
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Here, we use Lemma to bound the norms of the 3-tensors in terms of the norms of matrices,
eg. [[0aarLll, < [|0raryLl,, because da;a,+, L = 0 if i # j and Oa,a,7 L = (NT)™ 1/2677%% Then,
we use Lemma [D.4] to bound g-norms in terms of oco-norms, and then explicitly expressed those oo-
norm in terms of the elements of the matrices. Finally, we use that |Y°, Oxsly| < >, [0r3f;| and
I>°; Onsliv| < 34 |0xslis], and apply Assumption (4ii).

# By Assumption (iv), [|S||lq = Op ((NT)~1/4+1/(29)) and H5ﬂ¢/EH = Op (1). For example,

a\ a
) —0p (N—1/2+1/q) —0p ((NT)—1/4+1/(2q)) .

q
1
ISl = i (Z ;Mt +; zijmt

# By Assumption (v) and (vi), | H|| = Op ((NT)=3/16) = op ((NT)~'/8) and H@g¢¢EH = Op ((NT)3/1%) =
DpssL

op ((NT)~1/#). We now show it [|#]. The proof for
By the triangle inequality,

is analogous.

1| = 1056 £ = B [0 L1 < 1000 £ = B [Oaar L]l + 1857L = B [0/ L[| + 2 |0y £ = Eis [Bary LI

Let & = On2liy — Eg [Or20i]. Since Oqo L is a diagonal matrix with diagonal entries \/% > it
|0aa’ £ — Eg [Onar L]|| = max; \/% >+ &it, and therefore

8
Eg [|0aar £ — Eg [aaa“c]HS =Eq maX <\/— Zfﬁ)

i 1 ; 1\* 4
< Eg ;(ﬁgfio <CN (\/—N) =O0p(N77).

Thus, |0aa’L — Eg [Oaa L]|| = Op(N73/8). Analogously, |0y L — Eg [04, L] = Op(N73/8).
Let £ be the N x T' matrix with entries &;;. We now show that & satisfies all the regularity condition of

Lemma [D.6lwith e;; = &. Independence across i is assumed. Furthermore, o7 = + Zt 1Ep(2) < ci/4
so that ZZ 1 ( ) = Op(1). For Q4 = N Zi:l Ey(&iis),

4
1
TTY(Q4) <9* <2l = <mt3XZE¢ [5it§is]> <C=0p(1).
1 T L e 4 T fe 1NN 4\ _
For nij = —= Y Gt — Eg(&ir&je)] we assume Egny; < O, which implies § > ;7 Eg (n) = Op(1)
d + Zf\fj:l Ey (1%;) = Op(1). Then, LemmalD.Gl gives ||£]| = Op(N*/%). Note that & = ﬁaav’ﬁ_
E¢ [0 L] and therefore |0n L — Eg [0ay L]|| = Op(N73/8). We conclude that |H|| = Op(N—3/8) =

Op ((NT)=3/16).
# Moreover, for &; = O2lit — By [Or2lit]

8+
~ - 1
Eg|H|IS” = Eg (ﬁ mbe; |§z‘t|> = E¢ max (—T ; it )
. 847 s
<EY (\/W;m) §E¢;< ) ( Zw“) — 0p(V),

20With a slight abuse of notation we write xq~ L for the N x T matrix with entries (NT) ™28, 50 = (NT) ™29, 34;:, and
analogously for Oraal, Oryy L, and Orya L.

8+v
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and therefore ||H| oo = 0p(N'/8). Thus, by Lemma [D.4]
12l < IR = op (NVBS/HG=3/001)  op (N=1/41/5) — op(1),

where we use that ¢ < 8.
# Finally we show that HZ 9 Douon L (H ' S]y [H‘ls]hH = op ((NT)~V/4). First,

dim ¢
~ 1o m—1
> Ovs,on LIH Sly[H S
g,h=1
dim ¢ _ L L dim ¢ _ L L
> Das,on LI SIgH Sha|| + || X 0,0 LI SIgH S
g,h=1 g,h=1
Let (v,w)" = ﬂilS, where v is a N-vector and w is a T-vector. We assume Hg% = Op(1). By
L
Lemma B3 this also implies Hﬂ‘lH — Op (1) and ||S|| = Op (1). Thus, |jv] < ] 18|l = Op (1),

— 1 ———1 _
ol < [ 11 = 0p (. vl < lelly < 77| 1Sl = Op (ND)7/451/@0), s < flully <

Hﬁiluq [Sllq = Op (NT)~1/4+1/(29)) Furthermore, by an analogous argument to the above proof for

|H||, Assumption (v) and (vi) imply that ‘ &r(m/ZH = Op(N3/%), ‘ &rM/ZH = Op(N3/%), ‘ &W.Y/ENH =
Op(N~3/8). Then,
dim ¢ N N T T "
Z Ocidgbn LH S [H S = Z iy £ vjvk + ZZZ v ve vat + Z Oasyirys L) Wiws
g,h=1 7,k=1 j=1t=1 t,s=1
N
Z v —|—22 i vzwt—kz A~y wt,
j=1
and therefore
dim ¢ B L L _ _ _
>~ atyon LSy Sh|| < ||Oraa Z|| 10l110llo0 +2 [Drar Z| Il [Vl + || Orar ]| ol
g,h=1

= Op(N3/30p ((NT)—1/4+1/(2q)) - 0p ((NT)—1/4—3/16+1/(2q)) — op ((NT)‘”“) 7

where we use that ¢ > 4. Analogously, HE e 1Oy, L [ﬂilS]g[ﬂilS]hH = op ((NT)~Y/4) and thus

also |3, 0, £ S), S| = op (v1) 1) B =
21Given the structure of this last part of the proof of Lemma [D.7 one might wonder why, instead of
szlm¢ 8¢¢g¢h£[”H S] [H S H = op ((NT) 1/4)7 we did not directly impose HB% ¢/£H = op ((NT) 1/(2q)) as
a high-level condition in Assumption [B.Ivi). While this alternative high-level assumption would indeed be more elegant and

sufficient to derive our results, it would not be satisfied for panel models, because it involves bounding

2

8%'”/2“ and

&/ma/E H, which was avoided in the proof of Lemma [D.71
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D.4 Properties of the Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

—%

_ H H, b
H = E¢[—8¢¢/£] = _}EO‘O‘)/ —SKOZV) + ’U’U/,
Hiam]  Hiym

where v = vy = (U, =15)', Hna) = diag( ks 3, Eo[0r2bit)), Hianyit = TamEol—0r2lir], and
Hiyy) = diag(Az 3, B[~ 0r2Lis]).

In panel models with only individual effects, it is straightforward to determine the order of magnitude
of ﬁA in Assumption [B.Iliv), because H contains only the diagonal matrix ﬁraa). In our case, H is
no longer diagonal, but it has a special structure. The diagonal terms are of order 1, whereas the

off-diagonal terms are of order (NT)~/2. Moreover, Hﬂ - diag(g?aa),ﬂzw))u = Op((NT)~1/2).

These observations, however, are not sufficient to establish the order of ﬁ_l because the number of
non-zero off-diagonal terms is of much larger order than the number of diagonal terms; compare O(NT)
to O(N+T). Note also that the expected Hessian without penalty term 7" has the same structure as 7
itself, but is not even invertible, i.e. the observation on the relative size of diagonal vs. off-diagonal terms
is certainly not sufficient to make statements about the structure of ﬂ_l. The result of the following
lemma is therefore not obvious. It shows that the diagonal terms of 7 also dominate in determining the
order of H .

Lemma D.8. Under Assumptions[{.1]

—%

Hg_l — diag (Hma)ﬁ?w))_l =Op ((NT)’”Q) :

max

This result establishes that gﬂ can be uniformly approximated by a diagonal matrix, which
is given by the inverse of the diagonal terms of H without the penalty. The diagonal elements of
diag(ﬁ?aa) , ﬁzﬁw))’l are of order 1, i.e. the order of the difference established by the lemma is relatively
small.

Note that the choice of penalty in the objective function is important to obtain Lemma[D.8l Different
penalties, corresponding to other normalizations (e.g. a penalty proportional to a?, corresponding to
the normalization a1 = 0), would fail to deliver Lemma [D-8 However, these alternative choices do
not affect the estimators B and 25\, i.e. which normalization is used to compute B and ¢ in practice is

irrelevant (up to numerical precision errors).

D.4.1 Proof of Lemma [D.§
The following Lemmas are useful to prove Lemma D8 Let £*(8,¢) = (NT)"Y2 Y, £u(B, i + 7).

Lemma D.9. If the statement of Lemma holds for some constant b > 0, then it holds for any
constant b > 0.

Proof of Lemma [D.9l Write H =H + \/ZI:I—T’U’UI, where H = Eg [—%{;,E*] Since H'v = 0,

3

v = (—*)T_’_ib(\/ﬁ !

T
w7 + (&”“/) = () + g = () + s



where 1 refers to the Moore-Penrose pseudo-inverse. Thus, if H; is the expected Hessian for b = b1 >0

T Vi VNT

O ((NT)=1/?). |

and Hs is the expected Hessian for b = by > 0,

-1
Lemma D.10. Let Assumption [[-1] hold and let 0 < b < byin (1 + % bl:‘a;c) . Then,

b

bmax

—1 — =1 =
HH(QQ)’H(Q»Y)HOO <1-— , and HIH(’YV) IH('ya)

<1l-

bmax

Proof of Lemma [D.10l Let h;yy = E4(—0,20;), and define

Jt_b

hit = hit — b —
o b—1+z<2hﬁ TS

By definition, H(aa) = H(aa) + b1n1y/VNT and Hiayy = H o,y — bln1y/VNT. The matrix H
is diagonal with elements ), h;z/V NT. The matrix ﬂzﬁav) has elements h;; /v NT. The Woodbury
identity states that

eyt I NT b1 w—1 |
H(aa) - H(aa) aa)lN ( Ty + 1 %(aa)lN) /NH(aoz)'
Then, H(aa) Hiay) = H(aa)H/\/ T, where H is the N x T matrix with elements h;;. Therefore

Et ﬁ
ax .
Zt it

Assumption {.I](iv) guarantees that bmax > hit > bmin, which implies hjy — b > bmin — b > 0, and

— 1 —
o] = m

- 1 <= hj—b N b
hig > hig —b— — gt - mein_b(l'i‘de)Z(l

We conclude that

— 1 — 2 h hit . 1 1 hje —b
HaaHa H _ma'X ¢ :1_m.ln b+ - )
[ P b M R T 2 S
b
1 —
< bmax
Analogously, ||H ) H (ya) o< 1— 5 .

min min(N,T) bmin
for large enough N and T, so that Lemma [D.10] becomes applicable. The choice of b has no effect on

1 -1
Proof of Lemma [D.8l We choose b < bmin (1 + max(x2, f<a_2)ll’7”ﬂ) . Then, b < byin (1 4 max(N,T) b“‘a")

the general validity of the lemma for all b > 0 by Lemma

By the inversion formula for partitioned matrices,

S
7= ( A AH(M) Hyy) ) 7
H(W) H(ya) A H T H(W) Hya) AH (o) H
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with A := (g(aa) - ﬁ(w)g(_%)ﬂ(m))*l. The Woodbury identity states that

—-—— ——k— ——k— ——k— -1 ——k—
H(ala) = H(ao];) - H(a;)lN (V NT/b+ 1§v7'l(a;)1N) 1/1\7%(&;),

:JC(QQ)

x—1
(vy) -

——1 S —— —x—1 -1
Hyy) = Hiyy) = Higplr ( NT/b+ 11ffH’(w)1T) 17 H

=:Cy)

. x—1 ——*—1 i e
By Assumptlon m(”)a ||H(aa)HOO = OP(l)v HH(’y'y)”OO = Op(l), ||H(oc’y)||max = Op(l/ NT) There-

for e

—*—1 ——*—1 -1
10 aa) max < [ (aayllZe 11N Ly || max (V NT/b+ 1§v7'l(aa)1N) = Op(1/VNT),

——*—1

——1
1M (e loo < [H(aa lso + N Claa) lmax = Op(1).

— 1 — — %
Analogously, |C(y)|lmax = Op(1/VNT) and [ H,.)llc = Op(1). Furthermore, ||H o) [lmax < M (ary)llmax+
b/vVNT = Op(1/V/NT). Define

1 1 —1 o 1 [ T n
B:= (]lN - H(alaW(av)H(%)H(m)) ~Iv=) (H(ala)H(av)H(vlv)H(va))
n=1

—1 ——1 —x—1 —1 —1 = =1 =

Then, A= H(aa) +H(aa)B = H(aa) - C(aa) +H(aa)B' By Lemmam ”H(aa)H(a'y)H(»y»y)H('ya)||oo S
—1 = —1 — 2

1P e e e P iyl < (1= 5 ) < 1, and

bmax

= ——1 = ——1 — no——1 — ——1 —
1Bllmax < > (1P o) Fteon Hiom Feranlloe ) et oo P o I oo P s
n=0
oo b 2n _ 4 _ .
< [Z (1= 5= ) | 1P el e P e = O (1/ VR
n=0 max

By the triangle inequality,
——1 ——1

[Alloo < [H (aaylloe + Nl#H (aa) lloo | Bllmax = Op(1).

Thus, for the different blocks of
—* -1 ———— — ——1
7 < Hawy 0 ) _ ( _Aj Haa) L —AHay H_@ )
0 Hy) “Him Heaay A Mgy Hiya) AH(ay) Hiry) = Clam)

=*k—1

=1
HA B H(aa) max - HH(aa)B B C(aa)

max

——1 ——

< HH(aa)HOOHB”max - ”O(aa)HmaX = OP(l/ NT),
— — 1 — ——1

H_AH(O"Y) H('Y’Y) max < HAHOO”H(OW)HmaxHH(»},»y)”oo = OP(l/\/ NT),

—1 = — ——1 ——1 — —
[ For) AT Ty = Clom| < I 12 B oo Al ey i+ 11 Gl

—1

< NIH ) 12l AllsolH o) [Fmax + 1€ llmax = Op(1/VNT).

22 Here and in the following me make use of the inequalities |AB|lmax < ||Allco||Bllmax, |AB]max < ||Almax||B’]loo,

|Alloe < nl||Allmax, which hold for any m x n matrix A and n X p matrix B.
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The bound Op(1/vNT) for the max-norm of each block of the matrix yields the same bound for the
|

max-norm of the matrix itself.

D.5 A Useful Algebraic Result

Let P be the linear operator defined in equation (C.3]), and and let IP be the related projection operator
defined in (C2). Lemma [D.17] shows how in the context of panel data models some expressions that
appear in the general expansion of Appendix [Bl can be conveniently expressed using the operator p.

This lemma is used extensively in the proof of part (i) of Theorem [C]

Lemma D.11. Let A, B and C be N x T matrices, and let the expected incidental parameter Hessian
H be invertible. Define the N + T wvectors A and B and the (N +T) x (N +T) matriz C as follow

A_L AlT _L BlT C—L diag(ClT) C
TNT\A'ly )’ T NT\B'ly)’ T NT C' diag(C'ly))
Then,
__ 1 ~
i AH B (PA)iBir = —=—= Y (PB)itAu,
(i) th )it Bit mg it At
(i) AH 'B=-—— ZE¢ ,203)(PA)yt (PB)i,

AHCH 'B= Z(IPA)“C”(IPB)“.

it

(iii)

~ %
[e3%

Proof. Let &; +7; = (PA); = (PA)y, with A as defined in equation (C3). The first order condition of
the minimization problem in the definition of (IPA); can be written as \/%ﬂ* (;Y )=

VNTH A (this is the solution that imposes the normalization ), &; = >, 7%,

but this is of no importance in the following). Thus,

= A. One solution to

this equation is (%)

AH'B= <‘f‘

o i

x lzt: &; Byt + ;:}/:Bit \/_ Zzt: (PA);Bi.

This gives the first equality of Statement (7). The second equality of Statement (i) follows by symmetry.
Statement (i) is a special case of of Statement (i7i) with C = Wﬁ*’ so we only need to prove
Statement (7i1).

Let af +7; = (PB)y = (PB)i, where By = By an argument analogous to the one

Bit
B¢ (=0,24it)"

. * 571 . e . .
given above, we can choose (:) =V NTH B as one solution to the minimization problem. Then,

AHcH 'B= > (& Civas + 67 Cui + 3 Civaf + 37 Ciri] = D (P A)Cir(P B

it

28Note that Alr is simply the N-vectors with entries LA

analogously for B and C.
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Table 3: Finite sample properties of static probit estimators (N = 52)

Coefficient Average Effect
Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95
Design 1: correlated individual and time effects
T=14
MLE-FETE 13 12 17 0.88 0.76 1 8 8 0.93 0.93
Analytical 0 10 10 1.05 0.96 -1 8 8 0.95 0.95
Jackknife -7 11 13 0.89 0.85 0 9 9 0.80 0.88
T=26
MLE-FETE 8 8 11 0.93 0.81 0 6 6 0.94 0.95
Analytical 0 7 7 1.03 0.95 0 6 6 0.95 0.95
Jackknife -3 7 8 0.97 0.91 0 6 6 0.89 0.92
T =52
MLE-FETE 5 5 7 0.98 0.83 0 4 4 0.99 0.94
Analytical 0 5 5 1.05 0.96 0 4 4 0.99 0.94
Jackknife -1 5 5 0.99 0.95 0 4 4 0.94 0.93
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE 12 9 15 0.93 0.74 0 5 5 1.06 0.97
Analytical -1 8 8 1.11 0.97 -1 5 5 1.08 0.97
Jackknife -7 9 11 0.94 0.84 -1 6 7 0.83 0.90
T=26
MLE-FETE 7 6 10 0.93 0.75 0 4 4 0.98 0.95
Analytical 0 6 6 1.03 0.96 0 4 4 0.99 0.95
Jackknife -2 6 6 1.00 0.92 0 4 4 0.90 0.93
T=052
MLE-FETE 5 4 6 1.00 0.79 0 2 2 1.07 0.96
Analytical 0 4 4 1.07 0.97 0 2 2 1.07 0.96
Jackknife 0 4 4 1.04 0.96 0 2 2 1.00 0.94

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated
from the probit model: Y = 1(BX; + a; + v; > €y), with g ~ i.i.d. N(0,1), q; ~ i.i.d. N(0,1/16), y; ~
i.i.d. N(O, 1/16) and B = 1. Indesign 1, Xy = Xit1 / 2 + G+ Yy + Vi, Ve ~ i.i.d. N(O, 1/2), and Xjp ~
N(0,1). In design 2, X = X1 / 2 + Vi, Vi ~ i.i.d. N(O, 3/4), and X, ~ N(0O,1), independent of a; y v; .
Average effect is B E[@(BXi + a; + vi)], where @() is the PDF of the standard normal distribution. MLE-

FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the
bias corrected estimator that uses an analytical correction; and Jackknife is the bias corrected estimator
that uses split panel jackknife in both the individual and time dimension.
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Table 4: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Y4 Average Effect Y,

Bias Std. Dev. RMSE SE/SD_p; .95 Bias Std. Dev. RMSE SE/SD _ p; .95

Design 1: correlated individual and time effects

T=14
MLE-FETE -44 30 53 0.96 0.67 -52 26 58 0.96 0.43
Analytical (L=1) -5 26 26 1.10 0.96 -6 27 28 0.90 0.91
Analytical (L=2) -4 28 28 1.03 0.95 -4 29 30 0.85 0.90
Jackknife 12 33 35 0.88 0.89 -4 33 33 0.76 0.85
T=26
MLE-FETE -23 21 30 0.98 0.79 -29 19 35 0.98 0.65
Analytical (L=1) -4 19 19 1.05 0.96 -3 20 20 0.96 0.94
Analytical (L=2) -1 20 20 1.02 0.96 -1 21 21 0.92 0.93
Jackknife 2 22 22 0.93 0.94 -1 23 23 0.85 0.91
T =052
MLE-FETE -9 14 17 0.99 0.90 -14 14 20 0.98 0.82
Analytical (L=1) -1 13 13 1.04 0.95 -1 14 14 0.97 0.94
Analytical (L=2) 0 14 14 1.02  0.95 1 15 15 0.96 0.94
Jackknife 1 14 14 0.98 0.94 0 15 15 0.91 0.92
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE -38 28 47 0.94 0.66 -46 24 52 0.95 0.45
Analytical (L=1) -5 24 25 1.07 0.97 -6 25 26 0.91 0.92
Analytical (L=2) -4 26 26 1.01 0.95 -4 26 27 0.86 0.89
Jackknife 9 31 32 0.85 0.89 -3 31 31 0.75 0.84
T=26
MLE-FETE -19 19 27 0.97 0.80 -26 18 31 0.96 0.67
Analytical (L=1) -4 17 18 1.05 0.95 -4 18 18 0.95 0.93
Analytical (L=2) -2 18 18 1.02 0.95 -2 19 19 0.92 0.93
Jackknife 1 19 19 0.94 0.94 -1 20 20 0.84 0.90
T =052
MLE-FETE -8 13 15 0.98 0.90 -12 12 17 0.98 0.82
Analytical (L=1) -1 12 12 1.03 0.95 -1 12 13 0.98 0.94
Analytical (L=2) 0 12 12 1.01 0.94 0 13 13 0.96 0.94
Jackknife 0 13 13 0.98 0.95 0 13 13 0.93 0.92

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the
probit model: Y = 1(ByYir1 + BzZi + @i + Y > &), With Yig = 1(BzZjo + a; + Yo > €p), & ~ i.i.d. N(0,1), a; ~ i.i.d.
N(0,1/16), Yy ~ i.i.d. N(O, 1/16), By = 0.5, and B; = 1. Indesign 1, Zy = Zjy.; / 2 + @; + Y¢ + Vi, Vie ~ i.i.d. N(O,
1/2), and Zj; ~ N(O,1). In design 2, Z = Zi+4 / 2 + Vi, Vi ~ i.i.d. N(O, 3/4), and Z;; ~ N(0,1), independent of a; y v,
Average effect is E[®(By + BzZic + a; + Vi) - P(B,Zi: + a; + V)], where ®() is the CDF of the standard normal

distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical
(L = 1) is the bias corrected estimator that uses an analytical correction with | lags to estimate the spectral
expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and
time dimension.
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Table 5: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Z; Average Effect Z;;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

Design 1: correlated individual and time effects

T=14
MLE-FETE 20 13 23 0.86 0.59 4 10 10 0.86 0.90
Analytical (L=1) 2 11 11 1.06 0.97 1 9 9 0.88 0.93
Analytical (L=2) 2 11 11 1.05 0.97 1 10 10 0.87 0.93
Jackknife -9 14 16 0.81 0.81 3 11 12 0.74 0.86
T=26
MLE-FETE 10 8 13 0.94 0.74 2 7 7 0.92 0.92
Analytical (L=1) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Analytical (L=2) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Jackknife -3 8 8 0.97 0.91 1 7 7 0.86 0.91
T=052
MLE-FETE 6 5 8 0.94 0.75 1 5 5 0.94 0.92
Analytical (L=1) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Analytical (L=2) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Jackknife -1 5 5 0.99 0.94 0 5 5 0.94 0.93
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE 17 10 20 0.92 0.58 3 6 6 1.07 0.93
Analytical (L=1) 1 8 8 1.13 0.97 0 6 6 1.08 0.97
Analytical (L=2) 1 8 8 1.12 0.97 0 6 6 1.08 0.96
Jackknife -8 11 14 0.84 0.82 2 7 8 0.84 0.90
T=26
MLE-FETE 10 7 12 0.92 0.68 2 4 5 1.03 0.94
Analytical (L=1) 1 6 6 1.03 0.96 0 4 4 1.03 0.96
Analytical (L=2) 0 6 6 1.04 0.96 0 4 4 1.03 0.96
Jackknife -3 6 7 0.98 0.90 0 5 5 0.94 0.93
T=052
MLE-FETE 6 5 7 0.92 0.74 1 3 3 1.01 0.93
Analytical (L=1) 0 4 4 0.99 0.95 0 3 3 1.01 0.94
Analytical (L=2) 0 4 4 0.99 0.95 0 3 3 1.01 0.95
Jackknife -1 4 5 0.95 0.94 0 3 3 0.95 0.94

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit
model: Y = 1(ByYie1 + BzZi + 0 + Y > &), With Yig = 1(BzZio + a; + Yo > &), & ~ i.i.d. N(0,1), a; ~ i.i.d. N(0,1/16),
Yt ~ i.i.d. N(O, 1/16), By = 0.5, and Bz = 1. Indesign 1, Zy = Z;r; / 2 + a; + V¢ + Vi, Vie ~ i.i.d. N(O, 1/2), and Z;q ~
N(O,1). In design 2, Z = Zi+y / 2 + Vi, Vi ~ i.i.d. N(O, 3/4), and Z;, ~ N(0,1), independent of a; y y.. Average effect is
Bz E[@(ByYit1 + BzZi + a; + Yi)], where @() is the PDF of the standard normal distribution. MLE-FETE is the probit
maximum likelihood estimator with individual and time fixed effects; Analytical (L = |) is the bias corrected estimator

that uses an analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected
estimator that uses split panel jackknife in both the individual and time dimension.
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Table 6: Finite sample properties of static Poisson estimators
Coefficient Z;; Coefficient Z;* Average Effect Z;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

N =17, T = 22, unbalanced

MLE -59 14 60 1.04 0.01 -58 14 60 1.03 0.01 222 113 248 1.15 0.60
MLE-TE -62 14 64 1.01 0.01 -62 14 64 1.01 0.01 -9 139 139 1.04 0.94
MLE-FETE -2 17 17 1.02 0.96 -2 17 17 1.02 0.96 -15 226 226 1.49 1.00
Analytical (L=1) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -9 225 225 1.50 1.00
Analytical (L=2) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -6 225 225 1.50 1.00
Jackknife -3 25 25 0.69 0.83 -3 25 25 0.70 0.83 -15 333 333 1.01 0.95
N = 34, T = 22, unbalanced
MLE -58 10 59 1.03 0.00 -57 10 58 1.03 0.00 226 81 240 0.98 0.20
MLE-TE -61 10 62 1.00 0.00 -61 10 62 1.00 0.00 -3 97 97 0.95 0.94
MLE-FETE 0 12 12 0.99 0.96 0 13 13 0.99 0.96 -6 158 158 1.12 0.98
Analytical (L=1) 0 12 12 0.99 0.96 0 13 13 0.99 0.96 0 159 158 1.11  0.98
Analytical (L=2) 1 13 13 0.99 0.96 1 13 13 0.99 0.96 3 159 159 1.11  0.98
Jackknife -1 14 14 0.90 0.93 -1 14 14 0.90 0.93 -15 208 208 0.85 0.90
N =51, T = 22, unbalanced
MLE -58 8 58 1.00 0.00 -57 8 57 1.00 0.00 228 66 238 0.96 0.06
MLE-TE -61 8 61 1.00 0.00 -61 8 61 1.00 0.00 -1 77 77 0.95 0.94
MLE-FETE 0 10 10 0.97 0.94 0 11 11 0.97 0.94 -4 128 128 1.04 0.96
Analytical (L=1) 0 10 10 0.97 0.94 0 11 11 0.97 0.94 2 129 128 1.04 0.96
Analytical (L=2) 1 10 11 0.96 0.94 1 11 11 0.96 0.94 5 129 129 1.04 0.96
Jackknife 0 11 11 0.90 0.93 0 11 11 0.90 0.94 -12 169 170 0.79 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y; ~ Poisson(exp{B;Xi + B.Xi> + a; + v,}) with all

the variables and coefficients calibrated to the dataset of ABBGH. Average effect is E[(B; + 2B, Xi)exp(BiXi + B.Xi> + a; + Y;)]. MLE is the Poisson maximum likelihood
estimator without individual and time fixed effects; MLE-TE is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum
likelihood estimator with individual and time fixed effects;Analytical (L = I) is the bias corrected estimator that uses an analytical correction with | lags to estimate the
spectral expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.
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Table 7: Finite sample properties of dynamic Poisson estimators

Coefficient Y, 1y Average Effect Vi,

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

N =17,T = 21, unbalanced

MLE 135 3 135 1.82 0.00 158 2 158 3.75 0.00
MLE-TE 142 3 142 1.95 0.00 163 3 163 4.17 0.00
MLE-FETE -17 15 23 0.96 0.78 -17 15 22 1.38 0.89
Analytical (L=1) -7 15 17 0.98 0.91 -8 14 16 1.41 0.97
Analytical (L=2) -5 15 16 0.96 0.92 -5 15 16 1.38 0.98
Jackknife 4 20 21 0.73 0.85 4 20 20 1.03 0.95
N = 34, T = 21, unbalanced
MLE 135 2 135 1.76 0.00 158 2 158 2.82 0.00
MLE-TE 141 2 141 1.77 0.00 162 2 162 2.69 0.00
MLE-FETE -16 11 19 0.93 0.65 -16 10 19 1.05 0.71
Analytical (L=1) -7 11 13 0.95 0.89 -7 10 12 1.08 0.92
Analytical (L=2) -4 11 12 0.93 0.91 -4 10 11 1.05 0.94
Jackknife 3 13 14 0.77 0.85 3 13 13 0.86 0.89
N =51, T = 21, unbalanced
MLE 135 2 135 1.81 0.00 158 1 158 2.58 0.00
MLE-TE 141 2 141 1.79 0.00 162 2 162 2.41 0.00
MLE-FETE -15 8 17 0.97 0.55 -15 8 17 1.03 0.55
Analytical (L=1) -6 8 10 0.99 0.90 -6 8 10 1.05 0.91
Analytical (L=2) -3 8 9 0.97 0.93 -4 8 9 1.03 0.93
Jackknife 3 11 11 0.77 0.87 3 10 11 0.80 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is:
Yic ~ Poisson(exp{By log(1 + Y) + B1Z; + B,Zi* + a; + y}), where all the exogenous variables, initial condition and
coefficients are calibrated to the application of ABBGH_ Average effect is By E[exp{((By - 1)log(1 + Y;1) + B:1Z; +

B,Zi> + a; + Yi}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE

is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood
estimator with individual and time fixed effects; Analytical (L = |) is the bias corrected estimator that uses an
analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator
that uses split panel jackknife in both the individual and time dimension.
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Table 8: Finite sample properties of dynamic Poisson estimators

Coefficient Z;; Coefficient Z;* Average Effect Z;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

N =17, T = 21, unbalanced

MLE -76 27 81 1.13  0.29 -76 27 80 1.13 0.30 760 351 837 1.65 0.89
MLE-TE -65 28 71 1.12 0.44 -65 29 71 1.12 0.45 541 356 647 1.75 0.99
MLE-FETE 9 40 41 0.95 0.92 9 41 42 0.95 0.92 -3 1151 1150 1.08 0.99
Analytical (L=1) 4 40 40 0.97 0.94 4 40 40 0.97 0.94 11 1117 1116 1.11 0.99
Analytical (L=2) 3 39 39 0.97 0.94 3 40 40 0.97 0.94 15 1110 1109 1.12 0.99
Jackknife 3 57 57 0.68 0.82 3 57 57 0.68 0.81 24 1653 1651 0.75 0.86
N = 34, T = 21, unbalanced
MLE -75 19 77 1.18 0.04 -74 19 77 1.18 0.05 777 252 817 1.47 0.42
MLE-TE -65 19 67 1.18 0.15 -64 19 67 1.18 0.15 534 248 589 1.65 0.88
MLE-FETE 6 28 28 0.97 0.94 6 28 29 0.97 0.94 -68 734 736 1.03 0.94
Analytical (L=1) 2 27 27 0.99 0.95 2 28 28 0.99 0.95 -51 713 714 1.06 0.95
Analytical (L=2) 0 27 27 0.99 0.95 0 27 27 1.00 0.95 -47 706 707 1.07 0.95
Jackknife 2 31 31 0.87 0.92 2 31 31 0.87 0.92 -38 1012 1012 0.74 0.85
N =51, T = 21, unbalanced
MLE -74 15 76 1.17 0.00 -73 15 75 1.17 0.00 768 201 794 1.48 0.18
MLE-TE -63 16 65 1.15 0.05 -63 16 65 1.15 0.05 535 197 570 1.68 0.74
MLE-FETE 8 22 23 1.01 0.93 8 22 24 1.01 0.93 -27 606 606 0.99 0.95
Analytical (L=1) 4 21 22 1.02 0.95 4 22 22 1.02 0.95 -11 588 587 1.02 0.96
Analytical (L=2) 2 21 21 1.03 0.95 2 22 22 1.03 0.95 -5 581 580 1.03 0.96
Jackknife 3 25 25 0.89 0.91 4 25 25 0.89 0.91 8 838 837 0.71 0.83

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y;; ~ Poisson(exp{By log(1 + Y;c1) + B1Zy + B.Zi’
+ a; + vr), where all the exogenous variables, initial condition and coefficients are calibrated to the application of ABBGH. Average effect is E[(B; + 2B,Z;;) exp{Bylog(1

+ Yie1) + BiZi + B,Zi® + @ + Y¢}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson maximum
likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood estimator with individual and time fixed effects; Analytical (L = I) is the bias
corrected estimator that uses an analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split
panel jackknife in both the individual and time dimension.
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Table 9: Poisson model for patents

(1) () (3) (4) (5) (6)

Dependent variable: citation-
weighted patents

Static model

Competition 165.12  152.81 387.46 389.99 401.88 401.51
(54.77)  (55.74) (67.74)

-20.00 -6.43 -5.98 -5.49 -6.25 -4.74
(7.74) (8.61) (19.68)

Competition squared -88.55 -80.99 -204.55 -205.84 -212.15 -214.03

(29.08) (29.61) (36.17)

Dynamic model

Lag-patents 1.05 1.07 0.46 0.48 0.50 0.70
(0.02) (0.03) (0.05)

0.86 0.87 0.36 0.38 0.39 0.56
(0.02) (0.03) (0.07)

Competition 62.95 95.70 199.68 184.70 184.64 255.44
(62.68) (65.08) (76.66)

-12.78 -9.03 -1.68 -0.15 -0.43 -18.45
(7.54) (8.18)  (15.53)

Competition squared -34.15 -51.09 -105.24 -97.23 -97.22 -136.97

(33.21) (34.48)  (40.87)

Year effects Yes Yes Yes Yes Yes
Industry effects Yes Yes Yes Yes
Bias correction A A J
(number of lags) 1 2

Notes: Data set obtained from ABBGH. Competition is measured by (1-Lerner index) in the
industry-year. All columns are estimated using an unbalanced panel of seventeen industries
over the period 1973 to 1994. First year available used as initial condition in dynamic
model. The estimates of the coefficients for the static model in columns (2) and (3) replicate
the results in ABBGH. A is the bias corrected estimator that uses an analytical correction
with a number lags to estimate the spectral expectations specified at the bottom cell. Jis
the jackknife bias corrected estimator that uses split panel jackknife in both the individual
and time dimensions. Standard errors in parentheses and average partial effects in italics.
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Table 10: Homogeneity test for the jackknife

Cross section Time series
Static Model 10.49 13.37
(0.01) (0.00)
Dynamic Model 1.87 12.41
(0.60) (0.01)

Notes: Wald test for equality of common parameters across sub panels.

P-values in parentheses
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